Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (19): 1-8    DOI: 10.13995/j.cnki.11-1802/ts.024233
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
细菌脂肪氧合酶酶学性质分析及表达优化
庞翠萍1,2, 刘松1,2, 周景文1,2, 张国强1,2,*, 李江华2,*
1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122);
2(江南大学 生物工程学院,江苏 无锡,214122)
Characterization and expression optimization of lipoxygenase from bacteria
PANG Cuiping1,2, LIU Song1,2, ZHOU Jingwen1,2, ZHANG Guoqiang1,2,*, LI Jianghua2,*
1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China);
2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (3734KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 脂肪氧合酶(lipoxygenase,LOX)是一类含有非血红素铁的双加氧酶,在食品、医药和化工等行业具有广泛应用。利用Escherichia coli BL21(DE3)重组表达来源于Pseudomonas aeruginosaBurkholderia thailandensis的脂肪氧合酶PaLOX、BtLOX,并对其酶学性质进行比较分析。通过对酶学性质分析发现:PaLOX、BtLOX的最适反应温度分别为25和35 ℃;最适反应pH分别为7.0和7.5。PaLOX的Kcat/Km较BtLOX高16.7倍,展现出更好的开发应用潜力。为优化PaLOX的可溶性表达,采取了2种优化策略:首先利用乳糖作为诱导剂代替异丙基-β-D-硫代半乳糖苷(isopropyl-β-D-thiogalactoside,IPTG),使胞内酶活力提高了1.53倍,可溶表达水平提高了2.41倍;进一步与触发因子(triggering factor, TF)融合表达,TF-PaLOX酶活力提高了1.85倍,可溶表达水平提高3.19倍。该研究通过分析细菌来源脂肪氧合酶酶学性质及优化表达条件,为脂肪氧合酶的高效生产及应用提供了重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞翠萍
刘松
周景文
张国强
李江华
关键词:  脂肪氧合酶  酶学性质  可溶表达  触发因子    
Abstract: Lipoxygenase (LOX) is a kind of oxidoreductase containing non-heme iron in the active center, which is used in food, medicine and chemical industry. In our study, we first constructed recombinant Escherichia coli BL21(DE3) to express PaLOX and BtLOX from Pseudomonas aeruginosa and Burkholderia thalandensis, respectively, and compared their enzymatic properties. Enzymatic analysis showed that the optimum reaction temperature of recombinant PaLOX and BtLOX was 25 ℃ and 35 ℃, respectively. Their optimum reaction pH was 7 and 7.5. Furthermore, the Kcat/Km of PaLOX was 16.7 times higher than BtLOX and showed potential for industrial application. To improve soluble expression of PaLOX, the IPTG inducer was replaced with lactose, which increased the activity of intracellular LOX enzyme by 1.53 times, and the expression level of soluble protein was 2.41 times higher. Next, the activity of LOX increased 1.85 times and the level of soluble expression increased 3.19 times by fusion expressed LOX with triggering factor. These results provided an important reference for the efficient production and application of LOX.
Key words:  lipoxygenase    enzymatic properties    soluble expression    triggering factor
收稿日期:  2020-04-17      修回日期:  2020-05-20                发布日期:  2020-11-02      期的出版日期:  2020-10-15
基金资助: 国家自然科学基金项目(31771913); 中央高校基本科研业务费专项资金项目(JUSRP52026A)
作者简介:  第一作者:博士研究生(张国强副研究员和李江华教授为共同通讯作者,E-mail: gqzhang@jiangnan.edu.cn; lijianghua@jiangnan.edu.cn)
引用本文:    
庞翠萍,刘松,周景文,等. 细菌脂肪氧合酶酶学性质分析及表达优化[J]. 食品与发酵工业, 2020, 46(19): 1-8.
PANG Cuiping,LIU Song,ZHOU Jingwen,et al. Characterization and expression optimization of lipoxygenase from bacteria[J]. Food and Fermentation Industries, 2020, 46(19): 1-8.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024233  或          http://sf1970.cnif.cn/CN/Y2020/V46/I19/1
[1] ELLEN H, SUSAN K, ALENA L, et al.Identification of an amino acid determinant of pH regiospecificity in a seed lipoxygenase from Momordica charantia[J]. Phytochemistry, 2008, 69(16): 2 774-2 780.
[2] ANON. Evolution and expansion of the prokaryote-like lipoxygenase family in the brown alga Saccharina japonica[J]. Frontiers in Plant Science, 2017, 8: 2 018.
[3] RODCASEY, HUGHES R K J F B. Recombinant lipoxygenases and oxylipin metabolism in relation to food quality[J]. Food Biotechnology, 2004, 18(2): 135-170.
[4] CASEY R, WEST S I, HARDY D, et al.New frontiers in food enzymology: Recombinant lipoxygenases[J]. Trends in Food Science & Technology, 1999, 10(9): 297-302.
[5] ZHANG C, TAO T, YING Q, et al.Extracellular production of lipoxygenase from Anabaena sp. PCC 7120 in Bacillus subtilis and its effect on wheat protein[J]. Applied Microbiology and Biotechnology, 2012, 94(4): 949-958.
[6] SANTANO E, PINTO M D C, PEDRO M. Chlorpromazine oxidation by hydroperoxidase activity of covalent immobilized lipoxygenase[J]. Biotechnology and Applied Biochemistry, 2002, 36(2): 95-100.
[7] MAHALIK S, SHARMA A K, MUKHERJEE K J.Genome engineering for improved recombinant protein expression in Escherichia coli[J]. Microbial Cell Factories, 2014, 13(1): 177.
[8] LU X, LIU S, ZHANG D, et al.Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides[J]. Applied Microbiology and Biotechnology, 2013, 97(21): 9 419-9 427.
[9] KATERYNA G, SABINE S, DAGMAR H, et al.Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns[J]. Microbiology Open, 2019, 8(7): e775.
[10] STEFAN H, TERTIUS C, PIETER S.Lipoxygenases: From isolation to application[J]. Comprehensive Reviews in Food Science and Food Safety, 2017, 16(1): 199-211.
[11] RUSSELL R J, GERIKE U, DANSON M J, et al.Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium[J]. Structure, 1998, 6(6): 351-361.
[12] CIARÓN Ó' FÁGÁIN. Enzyme stabilization—recent experimental progress[J]. Enzyme and Microbial Technology, 2003, 33(2): 137-149.
[13] LU X, ZHANG J, LIU S, et al.Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2013, 97(13): 5 793-5 800.
[14] AN J U, KIM B J, HONG S H, et al.Characterization of an omega-6 linoleate lipoxygenase from Burkholderia thailandensis and its application in the production of 13-hydroxyoctadecadienoic acid[J]. Applied Microbiology and Biotechnology, 2015, 99(13): 5 487-5 497.
[15] CAO S, CHEN H, ZHANG C, et al.Heterologous expression and biochemical characterization of two lipoxygenases in oriental melon, Cucumis melo var. makuwa Makino[J]. Plos One, 2016, 11(4): e0153801.
[16] KELLE S, ZELENA K, KRINGS U, et al.Expression of soluble recombinant lipoxygenase from Pleurotus sapidus in Pichia pastoris[J]. Protein Expression and Puripication, 2014, 95: 233-239.
[17] TASAKI Y, TOYAMA S, KURIBAYASHI T, et al.Molecular characterization of a lipoxygenase from the basidiomycete mushroom Pleurotus ostreatus[J]. Bioscience Biotechnology and Biochemistry, 2013, 77(1): 38-45.
[18] HUI Q, BINGJIE X, YUJUN H, et al.Expression, purification, and characterization of a novel acidic Lipoxygenase from Myxococcus xanthus[J]. Protein Expres. Purif., 2017, 138: 13-17.
[19] VIDAL-MAS J, BUSQUETS M, MANRESA A.Cloning and expression of a lipoxygenase from Pseudomonas aeruginosa 42A2[J]. Antonie Van Leeuwenhoek, 2005, 87(3): 245-251.
[20] BALCHIN D, HAYER-HARTL M, HARTL F U. In vivo aspects of protein folding and quality control [J]. Science, 2016, 353(6 294): aac 4354.
[21] KRAMER G, PATZELT H, RAUCH T, et al.Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli[J]. Journal of Biological Chemistry, 2004, 279(14): 14 165-14 170.
[22] SHARMA B, CHUGH L K.Two isoforms of lipoxygenase from mature grains of pearl millet [Pennisetum glaucum (L.) R. Br.]: Purification and physico-chemico-kinetic characterization[J]. Journal of Food Science & Technology, 2017, 54(6): 1 577-1 584.
[23] 王卫东, 杨万根, 付湘晋. 白鲢鱼肌肉脂肪氧合酶的分离纯化与鉴定[J]. 食品科学, 2010, 31(23): 164-166.
[24] AKIKO S, HENRIK S L, KENJI M, et al.Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2018, 126(4): 436-444.
[25] EGMOND M R, BRUNORI M, FASELLA P M.The steady-state kinetics of the oxygenation of linoleic acid catalysed by soybean lipoxygenase[J]. European Journal of Biochemistry, 2010, 61(1): 93-100.
[26] JIN G, ZHANG J, YU X, et al.Crude lipoxygenase from pig muscle: Partial characterization and interactions of temperature, NaCl and pH on its activity[J]. Meat Science, 2011, 87(3): 257-263.
[27] KUHN H, WALTHER M, KUBAN R J. Mammalian arachidonate 15-lipoxygenases-Structure, function,biological implications [J]. Prostaglamdins & Other Lipid Mediators, 2002, 68-69: 263-290.
[28] 王广圣,徐智,刘松,陈坚,堵国成.重组脂肪氧合酶分子改造[J].食品科技,2014,39(9):2-7.
[29] LU X, LIU S, FENG Y, et al.Enhanced thermal stability of Pseudomonas aeruginosa lipoxygenase through modification of two highly flexible regions[J]. Applied Microbiology & Biotechnology, 2014, 98(4): 1 663-1 669.
[1] 蔡燕, 田丹, 严鑫, 李百裕, 李宇杰, 于丽娟, 吴锦明. 一步法快速从脱脂豆粉中三相分离脂肪氧合酶[J]. 食品与发酵工业, 2021, 47(9): 149-153.
[2] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[3] 杨胜远, 林谦, 刘淑敏, 苏巧云, 黄慧玲. 屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究[J]. 食品与发酵工业, 2021, 47(5): 28-34.
[4] 宋婷, 王帅静, 汪沉, 吕育财, 罗华军, 郭金玲, 龚大春. 近平滑假丝酵母ATCC 7330羰基还原酶CpCR的表达及酶学性质研究[J]. 食品与发酵工业, 2021, 47(3): 18-24.
[5] 于洁, 徐勤茜, 李子院, 刘红艳, 郝再彬, 李海云. 虎杖内生真菌Aspergillus aculeatus HZ001产β-葡萄糖苷酶的酶学特性[J]. 食品与发酵工业, 2021, 47(3): 31-35.
[6] 包怡, 胡友明, 朱林江, 陆跃乐, 陈小龙. 己糖氧化酶的研究进展[J]. 食品与发酵工业, 2021, 47(3): 218-223.
[7] 魏万涛, 李梦丽, 江波, 张涛. L-岩藻糖激酶/GDP-L-岩藻糖焦磷酸化酶的克隆表达及酶学性质研究[J]. 食品与发酵工业, 2020, 46(9): 18-24.
[8] 张庆芳, 王浚晨, 于爽, 刘春莹, 迟雪梅, 迟乃玉. 人体肠道中产尿酸氧化酶细菌的筛选、鉴定与酶学性质研究[J]. 食品与发酵工业, 2020, 46(8): 34-39.
[9] 宋丽丽, 闻格, 霍姗浩, 胡晓龙, 杨旭, 张志平. 白酒酒糟中产纤维素酶细菌的分离筛选和酶学性质研究[J]. 食品与发酵工业, 2020, 46(7): 43-49.
[10] 郑丹妮, 柏玉香, 纪杭燕, 李晓晓, 王禹, 蔣彤, 金征宇. γ-CGTase酶学性质及产物特异性影响因素[J]. 食品与发酵工业, 2020, 46(5): 38-45.
[11] 郑亚伦, 夏瑛, 李良, 董孝元, 方尚玲, 陈茂彬, 李琴. 源于解淀粉芽孢杆菌酸性木聚糖酶酶学性质的研究[J]. 食品与发酵工业, 2020, 46(24): 58-65.
[12] 周海岩, 周建宝, 易晓男, 李勉, 柳志强. 来源于Rhodohalobacter barkolensis的昆布多糖酶RbLam16的重组表达及生产条件优化[J]. 食品与发酵工业, 2020, 46(21): 9-15.
[13] 张妮, 张红岩, 杨梦莹, 刘聪, 杨立芳, 申乃坤, 姜明国. 一株海洋来源高效产角蛋白酶菌株的筛选、鉴定及其酶学性质研究[J]. 食品与发酵工业, 2020, 46(18): 98-104.
[14] 高慧, 刘松. 谷氨酰胺转氨酶活化蛋白酶在大肠杆菌中的表达及性质研究[J]. 食品与发酵工业, 2020, 46(15): 1-7.
[15] 田康明, 赵继华, 牛丹丹, NokuthulaPeaceMCHUNU, 王彩喆, 王正祥. 高转苷活性乳糖酶编码基因的克隆与酶学特征研究[J]. 食品与发酵工业, 2020, 46(15): 8-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn