Abstract: Iron is an essential trace element for the human body and is widely involved in basic biological processes such as oxygen transport and electron transport. Iron intake requires a strict adjustment mechanism to ensure the body's iron homeostasis, and maintaining the body's iron homeostasis is mainly achieved through fine regulation of intestinal iron absorption. Iron is widely involved in the functional regulation of specific immune systems such as immunocompetent cells and their cytokines and non-specific immune systems such as the phagocyte complement system. Intestinal microbes are closely related to the regulation of body iron homeostasis and affect the body's immune system function. Iron deficiency can cause significant changes in the balance and diversity of intestinal flora which could potentially affect intestinal immunity. This article reviews the effects of iron homeostasis, iron deficiency on intestinal flora and immunity, and the development of new iron supplements. It is proposed that iron may be used as a class of “de-biotics” to affect the balance of intestinal flora. New iron supplements development should focus on the overall impact of the host and intestinal flora, and provide new ideas for the development of new iron supplements so as to prevent and intervene with iron deficiency-related diseases.
管玲娟,曹丛丛,屠飘涵,等. 缺铁对肠道免疫功能的影响及新型补铁剂的研究进展[J]. 食品与发酵工业, 2020, 46(19): 264-270.
GUAN Lingjuan,CAO Congcong,TU Piaohan,et al. Research progress of the effect of iron deficiency on intestinal immune function and new iron supplements[J]. Food and Fermentation Industries, 2020, 46(19): 264-270.
[1] GANZ T.Iron and infection[J]. International Journal of Hematology, 2018, 107(1): 7-15. [2] 张陆阳, 张丹凤, 潘崚. 铁代谢调节及其相关疾病[J]. 国际输血及血液学杂志 2017, 40(1): 67-71. [3] 赵惠君. 关注儿童铁缺乏症的有效防治[J]. 临床儿科杂志, 2015, 33(5): 405-407. [4] 李明明. 大连市1 562例孕妇中铁缺乏及缺铁性贫血患病率的调查研究[D].大连: 大连医科大学, 2019. [5] HASSAN T H, BADR M A, KARAM N A, et al. Impact of iron deficiency anemia on the function of the immune system in children[J]. Medicine, 2016, 95(47): e5 395. [6] NAIRZ M, SCHROLL A, SONNWEBER T, et al.The struggle for iron-a metal at the host-pathogen interface[J]. Cellular Microbiology, 2010, 12(12): 1 691-1 702. [7] 王佳明, 安鹏, 王浩等. 铁稳态代谢分子机制及铁磁纳米颗粒研究进展[J]. 科学通报, 2019, 64(8): 788-801. [8] CAMASCHELLA C, NAI A, SILVESTRI L.Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica, 2020, 105(2): 260-272. [9] NAI A, LIDONNICI M R, RAUSA M, et al.The second transferrin receptor regulates red blood cell production in mice[J]. Blood, 2015, 125(7): 1 170-1 179. [10] YIANNIKOURIDES A, LATUNDE-DADA G O. A short review of iron metabolism and pathophysiology of iron disorders[J]. Medicines (Basel, Switzerland), 2019, 6(3):85. [11] TOMAS G.Systemic iron homeostasis[J]. Physiological Reviews, 2013, 4(93): 1 721-1 741. [12] RAMOS E, KAUTZ L, RODRIGUEZ R, et al.Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice[J]. Hepatology, 2011, 53(4): 1 333-1 341. [13] 肖新才, 刘健, 罗不凡,等. 膳食铁摄入、机体铁负荷与代谢综合征相关性研究[J].卫生研究,2011,40(10): 32-35. [14] GANZ T.Erythropoietic regulators of iron metabolism[J]. Free Radical Biology and Medicine, 2019, 133: 69-74. [15] FRAZER D M, WILKINS S J, ANDERSON G J.Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007, 293(3): G525-G531. [16] DESCHEMIN J C, NOORDINE M L, REMOT A, et al.The microbiota shifts the iron sensing of intestinal cells[J]. Faseb Journal, 2016, 30(1): 252-261. [17] DAS N K, SCHWARTZ A J, BARTHEL G, et al.Microbial metabolite signaling is required for systemic iron homeostasis[J]. Cell Metabolism, 2020, 31(1): 115-136. [18] 张忠胜, 余炳坚. 成人贫血并发急性脑梗死的临床特点分析[J]. 卒中与神经疾病, 2016, 23(6): 423-428. [19] ALY S S, FAYED H M, ISMAIL A M, et al.Assessment of peripheral blood lymphocyte subsets in children with iron deficiency anemia[J]. BMC Pediatrics, 2018, 18(1): 49. [20] DRURY K E, SCHAEFFER M, SILVERBERG J I.Association between atopic disease and anemia in US children[J]. Jama Pediatrics, 2016, 170(1): 29-34. [21] 余敏, 陈道平, 文静. 老年缺铁性贫血患者体液免疫和细胞免疫功能的变化[J]. 贵州医科大学学报, 2018, 43(6): 698-702. [22] JIANG Y, LI C, WU Q, et al.Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses[J]. Nature Communications, 2019, 10(1): 2 935. [23] THEURL I, HILGENDORF I, NAIRZ M, et al.On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver[J]. Nature Medicine, 2016, 22(8): 945-951. [24] PEREIRA M, CHEN T D, BUANG N, et al.Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo[J]. Cell Reports, 2019, 28(2): 498-511. [25] PAGANINI D, ZIMMERMANN M B.The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: A review[J]. American Journal of Clinical Nutrition, 2017, 106(6): 1688S-1693S. [26] YILMAZ B, LI H.Gut microbiota and iron: The crucial actors in health and disease[J]. Pharmaceuticals, 2018, 11(4): 98. [27] 姚立恒. 小鼠铁稳态失衡与肠道菌群变化的相关性研究[D]. 广州: 南方医科大学, 2019. [28] JAEGGI T, KORTMAN G A M, MORETTI D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants[J]. Gut, 2015, 64(5): 731-742. [29] DUHUTREL P, BORDAT C, WU T D, et al.Iron sources used by the nonpathogenic lactic acid bacterium lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry[J]. Applied and Environmental Microbiology, 2010, 76(2): 560-565. [30] ARCHIBALD F.Lactobacillus plantarum, an organism not requiring iron[J]. FEMS Microbiology Letters, 1983, 19(1): 29-32. [31] ALEXANDRA D.Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats.[J]. The Journal of nutrition, 2012, 2(142): 271-277. [32] KNIGHT L C, WANG M, DONOVAN S M, et al.Early-life iron deficiency and subsequent repletion alters development of the colonic microbiota in the pig[J]. Frontiers in Nutrition, 2019, 6: 120. [33] 胡红莲, 高民. 肠道屏障功能及其评价指标的研究进展[J]. 中国畜牧杂志, 2012, 48(17): 78-82. [34] WU W, LIU H P, CHEN F, et al.Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-beta production[J]. European Journal of Immunology, 2016, 46(5): 1 162-1 167. [35] 赵聪, 黄浩, 陈贵堂. 缺铁性贫血与补铁剂研究概况[J]. 食品安全质量检测学报, 2016, 7(8): 3 216-3 221. [36] LIN H M, DENG S G, HUANG S B, et al.The effect of ferrous-chelating hairtail peptides on iron deficiency and intestinal flora in rats[J]. Journal of the Science of Food and Agriculture, 2016, 96(8): 2 839-2 844. [37] 李文军, 王帅, 汪建明,等. 大豆多肽铁螯合物制备及其抗氧化性研究[J]. 食品研究与开发, 2017, 38(15): 39-44. [38] 廉雯蕾. 脱酰胺—酶解法制备米蛋白肽及其亚铁螯合物的研究[D]. 无锡: 江南大学, 2015. [39] 耿倩. 富铁酵母细胞的培养及其在治疗缺铁性贫血中的应用[D]. 青岛: 中国海洋大学, 2014. [40] 王方海, 赵维, 陈建芳,等. 补铁剂研究进展[J]. 药学进展, 2016, 40(9): 680-688. [41] AKSAN A, ISIK H, TUGAL D, et al.Safety profiles of different intravenous iron preparations for therapy of iron deficiency anemia: Preliminary results from the IBD subgroup analysis[J]. American Journal of Gastroenterology, 2019, 114: S1-S1. [42] 汪婧瑜, 张业辉, 张友胜,等. 乌鳢短肽螯合铁的制备及其结构特性研究[J]. 现代食品科技, 2018, 34(1): 188-194. [43] 刘文霞. 研究多糖铁复合物治疗缺铁性贫血的疗效以及其对血清转铁蛋白受体和血清铁蛋白的影响[J]. 当代医学, 2019, 25(16): 57-59. [44] XU L, MENG Y, LIU Y, et al.A novel iron supplements preparation from Grifola frondosa polysaccharide and assessment of antioxidant, lymphocyte proliferation and complement fixing activities[J]. International Journal of Biological Macromolecules, 2018, 108: 1 148-1 157. [45] 李世映, 唐志书, 宋忠兴,等. 酸枣多糖铁药理活性初步研究[J]. 食品工业科技, 2019, 40(6): 37-43;48. [46] CHEN X, HUANG G.Synthesis and antioxidant activities of garlic polysaccharide-Fe(III) complex[J]. International Journal of Biological Macromolecules, 2020, 145: 813-818. [47] KYYALY M A,POWELL C,RAMADAN E.Preparation of iron-enriched baker's yeast and its efficiency in recovery of rats from dietary iron deficiency[J].Nutrition,2015,31(9):1 155-1 164. [48] PEREIRA D I A, MOHAMMED N I, OFORDILE O, et al. A novel nano-iron supplement to safely combat iron deficiency and anaemia in young children: The IHAT-GUT double-blind, randomised, placebo-controlled trial protocol[J]. Gates Open Research, 2018, 2: 48-48. [49] WANG K, LI L, XU X, et al.Fe3O4@astragalus polysaccharide core-shell nanoparticles for iron deficiency anemia therapy and magnetic resonance imaging in vivo[J]. Acs Applied Materials & Interfaces, 2019, 11(11): 10 452-10 461. [50] GU Z, LIU T, TANG J, et al.Mechanism of iron oxide-induced macrophage activation: The impact of composition and the underlying signaling pathway[J]. Journal of the American Chemical Society, 2019, 141(15): 6 122-6 126.