Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (19): 264-270    DOI: 10.13995/j.cnki.11-1802/ts.024455
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
缺铁对肠道免疫功能的影响及新型补铁剂的研究进展
管玲娟, 曹丛丛, 屠飘涵, 成向荣*
(江南大学 食品学院,江苏 无锡,214122)
Research progress of the effect of iron deficiency on intestinal immune function and new iron supplements
GUAN Lingjuan, CAO Congcong, TU Piaohan, CHEN Xiangrong*
(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
下载:  HTML   PDF (1469KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁是人体必需微量元素,广泛参与机体氧气运输、电子传递等基本生物学过程。铁摄入需要有严密的调节机制以确保机体铁稳态,而维持机体铁稳态主要通过肠道铁吸收的精细调控实现。铁广泛参与特异性免疫系统如免疫活性细胞及其细胞因子,以及非特异性免疫系统如吞噬细胞补体系统等功能调控。肠道微生物与机体铁稳态调控密切相关且影响机体免疫系统功能。铁缺乏会导致肠道菌群平衡和多样性发生显著变化,对肠道免疫具有潜在的影响。本文综述了机体铁稳态、缺铁对肠道菌群、免疫的影响及新型补铁剂的开发,提出铁可能作为一类“抑生元”,影响肠道菌群平衡,新型补铁剂的开发应关注宿主、肠道菌群的整体影响,为新型补铁剂的开发及缺铁相关疾病的预防和干预提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
管玲娟
曹丛丛
屠飘涵
成向荣
关键词:  铁稳态  免疫  肠道菌群  补铁剂    
Abstract: Iron is an essential trace element for the human body and is widely involved in basic biological processes such as oxygen transport and electron transport. Iron intake requires a strict adjustment mechanism to ensure the body's iron homeostasis, and maintaining the body's iron homeostasis is mainly achieved through fine regulation of intestinal iron absorption. Iron is widely involved in the functional regulation of specific immune systems such as immunocompetent cells and their cytokines and non-specific immune systems such as the phagocyte complement system. Intestinal microbes are closely related to the regulation of body iron homeostasis and affect the body's immune system function. Iron deficiency can cause significant changes in the balance and diversity of intestinal flora which could potentially affect intestinal immunity. This article reviews the effects of iron homeostasis, iron deficiency on intestinal flora and immunity, and the development of new iron supplements. It is proposed that iron may be used as a class of “de-biotics” to affect the balance of intestinal flora. New iron supplements development should focus on the overall impact of the host and intestinal flora, and provide new ideas for the development of new iron supplements so as to prevent and intervene with iron deficiency-related diseases.
Key words:  iron homeostasis    immunity    gut microbiota    iron supplement
收稿日期:  2020-05-19      修回日期:  2020-06-09                发布日期:  2020-11-02      期的出版日期:  2020-10-15
基金资助: 国家自然科学基金项目(31700301)
作者简介:  第一作者:硕士研究生(成向荣副教授为通讯作者,E-mail:cheng-xiangrong@hotmail.com)
引用本文:    
管玲娟,曹丛丛,屠飘涵,等. 缺铁对肠道免疫功能的影响及新型补铁剂的研究进展[J]. 食品与发酵工业, 2020, 46(19): 264-270.
GUAN Lingjuan,CAO Congcong,TU Piaohan,et al. Research progress of the effect of iron deficiency on intestinal immune function and new iron supplements[J]. Food and Fermentation Industries, 2020, 46(19): 264-270.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024455  或          http://sf1970.cnif.cn/CN/Y2020/V46/I19/264
[1] GANZ T.Iron and infection[J]. International Journal of Hematology, 2018, 107(1): 7-15.
[2] 张陆阳, 张丹凤, 潘崚. 铁代谢调节及其相关疾病[J]. 国际输血及血液学杂志 2017, 40(1): 67-71.
[3] 赵惠君. 关注儿童铁缺乏症的有效防治[J]. 临床儿科杂志, 2015, 33(5): 405-407.
[4] 李明明. 大连市1 562例孕妇中铁缺乏及缺铁性贫血患病率的调查研究[D].大连: 大连医科大学, 2019.
[5] HASSAN T H, BADR M A, KARAM N A, et al. Impact of iron deficiency anemia on the function of the immune system in children[J]. Medicine, 2016, 95(47): e5 395.
[6] NAIRZ M, SCHROLL A, SONNWEBER T, et al.The struggle for iron-a metal at the host-pathogen interface[J]. Cellular Microbiology, 2010, 12(12): 1 691-1 702.
[7] 王佳明, 安鹏, 王浩等. 铁稳态代谢分子机制及铁磁纳米颗粒研究进展[J]. 科学通报, 2019, 64(8): 788-801.
[8] CAMASCHELLA C, NAI A, SILVESTRI L.Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica, 2020, 105(2): 260-272.
[9] NAI A, LIDONNICI M R, RAUSA M, et al.The second transferrin receptor regulates red blood cell production in mice[J]. Blood, 2015, 125(7): 1 170-1 179.
[10] YIANNIKOURIDES A, LATUNDE-DADA G O. A short review of iron metabolism and pathophysiology of iron disorders[J]. Medicines (Basel, Switzerland), 2019, 6(3):85.
[11] TOMAS G.Systemic iron homeostasis[J]. Physiological Reviews, 2013, 4(93): 1 721-1 741.
[12] RAMOS E, KAUTZ L, RODRIGUEZ R, et al.Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice[J]. Hepatology, 2011, 53(4): 1 333-1 341.
[13] 肖新才, 刘健, 罗不凡,等. 膳食铁摄入、机体铁负荷与代谢综合征相关性研究[J].卫生研究,2011,40(10): 32-35.
[14] GANZ T.Erythropoietic regulators of iron metabolism[J]. Free Radical Biology and Medicine, 2019, 133: 69-74.
[15] FRAZER D M, WILKINS S J, ANDERSON G J.Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2007, 293(3): G525-G531.
[16] DESCHEMIN J C, NOORDINE M L, REMOT A, et al.The microbiota shifts the iron sensing of intestinal cells[J]. Faseb Journal, 2016, 30(1): 252-261.
[17] DAS N K, SCHWARTZ A J, BARTHEL G, et al.Microbial metabolite signaling is required for systemic iron homeostasis[J]. Cell Metabolism, 2020, 31(1): 115-136.
[18] 张忠胜, 余炳坚. 成人贫血并发急性脑梗死的临床特点分析[J]. 卒中与神经疾病, 2016, 23(6): 423-428.
[19] ALY S S, FAYED H M, ISMAIL A M, et al.Assessment of peripheral blood lymphocyte subsets in children with iron deficiency anemia[J]. BMC Pediatrics, 2018, 18(1): 49.
[20] DRURY K E, SCHAEFFER M, SILVERBERG J I.Association between atopic disease and anemia in US children[J]. Jama Pediatrics, 2016, 170(1): 29-34.
[21] 余敏, 陈道平, 文静. 老年缺铁性贫血患者体液免疫和细胞免疫功能的变化[J]. 贵州医科大学学报, 2018, 43(6): 698-702.
[22] JIANG Y, LI C, WU Q, et al.Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses[J]. Nature Communications, 2019, 10(1): 2 935.
[23] THEURL I, HILGENDORF I, NAIRZ M, et al.On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver[J]. Nature Medicine, 2016, 22(8): 945-951.
[24] PEREIRA M, CHEN T D, BUANG N, et al.Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo[J]. Cell Reports, 2019, 28(2): 498-511.
[25] PAGANINI D, ZIMMERMANN M B.The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: A review[J]. American Journal of Clinical Nutrition, 2017, 106(6): 1688S-1693S.
[26] YILMAZ B, LI H.Gut microbiota and iron: The crucial actors in health and disease[J]. Pharmaceuticals, 2018, 11(4): 98.
[27] 姚立恒. 小鼠铁稳态失衡与肠道菌群变化的相关性研究[D]. 广州: 南方医科大学, 2019.
[28] JAEGGI T, KORTMAN G A M, MORETTI D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants[J]. Gut, 2015, 64(5): 731-742.
[29] DUHUTREL P, BORDAT C, WU T D, et al.Iron sources used by the nonpathogenic lactic acid bacterium lactobacillus sakei as revealed by electron energy loss spectroscopy and secondary-ion mass spectrometry[J]. Applied and Environmental Microbiology, 2010, 76(2): 560-565.
[30] ARCHIBALD F.Lactobacillus plantarum, an organism not requiring iron[J]. FEMS Microbiology Letters, 1983, 19(1): 29-32.
[31] ALEXANDRA D.Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats.[J]. The Journal of nutrition, 2012, 2(142): 271-277.
[32] KNIGHT L C, WANG M, DONOVAN S M, et al.Early-life iron deficiency and subsequent repletion alters development of the colonic microbiota in the pig[J]. Frontiers in Nutrition, 2019, 6: 120.
[33] 胡红莲, 高民. 肠道屏障功能及其评价指标的研究进展[J]. 中国畜牧杂志, 2012, 48(17): 78-82.
[34] WU W, LIU H P, CHEN F, et al.Commensal A4 bacteria inhibit intestinal Th2-cell responses through induction of dendritic cell TGF-beta production[J]. European Journal of Immunology, 2016, 46(5): 1 162-1 167.
[35] 赵聪, 黄浩, 陈贵堂. 缺铁性贫血与补铁剂研究概况[J]. 食品安全质量检测学报, 2016, 7(8): 3 216-3 221.
[36] LIN H M, DENG S G, HUANG S B, et al.The effect of ferrous-chelating hairtail peptides on iron deficiency and intestinal flora in rats[J]. Journal of the Science of Food and Agriculture, 2016, 96(8): 2 839-2 844.
[37] 李文军, 王帅, 汪建明,等. 大豆多肽铁螯合物制备及其抗氧化性研究[J]. 食品研究与开发, 2017, 38(15): 39-44.
[38] 廉雯蕾. 脱酰胺—酶解法制备米蛋白肽及其亚铁螯合物的研究[D]. 无锡: 江南大学, 2015.
[39] 耿倩. 富铁酵母细胞的培养及其在治疗缺铁性贫血中的应用[D]. 青岛: 中国海洋大学, 2014.
[40] 王方海, 赵维, 陈建芳,等. 补铁剂研究进展[J]. 药学进展, 2016, 40(9): 680-688.
[41] AKSAN A, ISIK H, TUGAL D, et al.Safety profiles of different intravenous iron preparations for therapy of iron deficiency anemia: Preliminary results from the IBD subgroup analysis[J]. American Journal of Gastroenterology, 2019, 114: S1-S1.
[42] 汪婧瑜, 张业辉, 张友胜,等. 乌鳢短肽螯合铁的制备及其结构特性研究[J]. 现代食品科技, 2018, 34(1): 188-194.
[43] 刘文霞. 研究多糖铁复合物治疗缺铁性贫血的疗效以及其对血清转铁蛋白受体和血清铁蛋白的影响[J]. 当代医学, 2019, 25(16): 57-59.
[44] XU L, MENG Y, LIU Y, et al.A novel iron supplements preparation from Grifola frondosa polysaccharide and assessment of antioxidant, lymphocyte proliferation and complement fixing activities[J]. International Journal of Biological Macromolecules, 2018, 108: 1 148-1 157.
[45] 李世映, 唐志书, 宋忠兴,等. 酸枣多糖铁药理活性初步研究[J]. 食品工业科技, 2019, 40(6): 37-43;48.
[46] CHEN X, HUANG G.Synthesis and antioxidant activities of garlic polysaccharide-Fe(III) complex[J]. International Journal of Biological Macromolecules, 2020, 145: 813-818.
[47] KYYALY M A,POWELL C,RAMADAN E.Preparation of iron-enriched baker's yeast and its efficiency in recovery of rats from dietary iron deficiency[J].Nutrition,2015,31(9):1 155-1 164.
[48] PEREIRA D I A, MOHAMMED N I, OFORDILE O, et al. A novel nano-iron supplement to safely combat iron deficiency and anaemia in young children: The IHAT-GUT double-blind, randomised, placebo-controlled trial protocol[J]. Gates Open Research, 2018, 2: 48-48.
[49] WANG K, LI L, XU X, et al.Fe3O4@astragalus polysaccharide core-shell nanoparticles for iron deficiency anemia therapy and magnetic resonance imaging in vivo[J]. Acs Applied Materials & Interfaces, 2019, 11(11): 10 452-10 461.
[50] GU Z, LIU T, TANG J, et al.Mechanism of iron oxide-induced macrophage activation: The impact of composition and the underlying signaling pathway[J]. Journal of the American Chemical Society, 2019, 141(15): 6 122-6 126.
[1] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[2] 贾叶, 包斌, 马明, 魏婷. 蚕蛹蛋白源肠内营养混悬剂对二型糖尿病小鼠肠道菌的影响[J]. 食品与发酵工业, 2021, 47(8): 62-66.
[3] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[4] 赵静, 秦艳, 左巍, 崔永亮, 焦必宁. 植物来源的黄酮类化合物抗体的制备和应用研究进展[J]. 食品与发酵工业, 2021, 47(4): 284-292.
[5] 林诺怡, 成坚, 王琴, 马路凯, 梁嘉熹, 李素芬, 姚文倩, 刘袆帆. 柚皮蛋白的结构表征及细胞免疫活性初步研究[J]. 食品与发酵工业, 2021, 47(3): 59-65.
[6] 徐珒昭, 汤梦琪, 徐境含, 滕国新, 许晓曦. 焦谷氨酸对高盐饮食小鼠肠道健康及肠道菌群的作用[J]. 食品与发酵工业, 2021, 47(2): 102-108.
[7] 孔庆敏, 朱慧越, 田培郡, 赵建新, 张灏, 陈卫, 王刚. 嗜酸乳杆菌La28对丙戊酸暴露引起的子代大鼠外周炎症和肝损伤的缓解作用[J]. 食品与发酵工业, 2021, 47(1): 125-131.
[8] 宫春宇, 刘羽婷, 单佳明, 徐硕, 邢悦. 玉米须多糖的乙醇沉淀分离及体内免疫调节作用研究[J]. 食品与发酵工业, 2021, 47(1): 143-147.
[9] 高健, 林巍, 刘晓兰, 刘祥, 郑喜群, 李冠龙. 玉米蛋白水解物免疫活性的研究[J]. 食品与发酵工业, 2021, 47(1): 148-154.
[10] 李陈晨, 赖凤羲, 夏永军, 艾连中, 张汇. 正红菇多糖提取物的化学组成及细胞免疫活性[J]. 食品与发酵工业, 2020, 46(9): 115-121.
[11] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[12] 赵孟良, 任延靖. 菊粉及其调节宿主肠道菌群机制的研究进展[J]. 食品与发酵工业, 2020, 46(7): 271-276.
[13] 万晓楠, 畅晓晖, 齐玮, 高欣, 乔彬, 杨向莹, 李小林, 张惠媛, 石嵩, 张捷, 周熙成. 基于近红外免疫层析技术快速检测食源性甲型肝炎病毒[J]. 食品与发酵工业, 2020, 46(7): 213-217.
[14] 樊乃境, 王冬梅, 高悦, 郭亚男, 程天赋, 房庆喜, 范志军. 山药蛋白肽对免疫能力低下小鼠的免疫调节作用[J]. 食品与发酵工业, 2020, 46(6): 101-107.
[15] 金星, 贺禹丰, 周永华, 陈晓华, 王刚, 赵建新, 张灏, 陈卫. 唾液乳杆菌CCFM 1054通过改变肠道菌群缓解空肠弯曲杆菌在小鼠体内的感染[J]. 食品与发酵工业, 2020, 46(5): 1-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn