Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (24): 58-65    DOI: 10.13995/j.cnki.11-1802/ts.024535
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
源于解淀粉芽孢杆菌酸性木聚糖酶酶学性质的研究
郑亚伦1,4, 夏瑛1,4, 李良2, 董孝元3, 方尚玲1,4, 陈茂彬1,4, 李琴1,4*
1(湖北工业大学 生物工程与食品学院,湖北 武汉,430070)
2(黄鹤楼酒业有限公司,湖北 武汉,430050)
3(武汉雅仕博科技有限公司,湖北 武汉,430061)
4(湖北省酿造工艺与装备工程技术中心,湖北 武汉,430070)
Enzymatic properties of acid resistant xylanase from Bacillus amyloliquefaciens
ZHENG Yalun1,4, XIA Ying1,4, LI Liang2, DONG Xiaoyuan3, FANG Shangling1,4, CHEN Maobin1,4, LI Qin1,4*
1(School of food and Biological engineering, Hubei University of Technology, Wuhan 430070, China)
2(Huanghelou Liquor Company Limited, Wuhan 430050, China)
3(Wuhan yashibo Technology Company Limited, Wuhan 430061, China)
4(Center for Brewing Technology & Equipment Research, Hubei University of Technology, Wuhan 430070, China)
下载:  HTML   PDF (5161KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文从解淀粉芽孢杆菌中克隆得到木聚糖酶基因,在大肠杆菌中实现高效率的异源性表达,设计响应面实验获得最佳的表达优化条件,得到更高酶活力的产物。利用异丙基-β-D-硫代吡喃半乳糖苷(isopropyl-β-D-thiogalactoside, IPTG)溶液对重组菌株BA-TB-1进行诱导表达,对诱导条件进行优化。实验发现该木聚糖酶对酸具有较好的耐受性,在pH值为5.0~6.0时有较高的酶活性。在37 ℃, pH5.0和pH 5.0~7.0条件下分别培养1 h,测定酶活力,残余酶活性分别保持在68%和50%以上。最后通过响应面法得到最佳的优化条件,在此最优条件下进行诱导表达。预测值和实际值分别为550.139、548.87 U/mL,预测值与实际值相近,说明应用响应面法优化木聚糖酶的表达条件可行,该实验结果为大量生产酸性木聚糖酶奠定了一定的理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑亚伦
夏瑛
李良
董孝元
方尚玲
陈茂彬
李琴
关键词:  木聚糖酶  解淀粉芽孢杆菌  耐酸性  酶学性质  克隆表达    
Abstract: Xylanase is a type of hydrolytic enzyme that can catalyze the hydrolysis of xylan in plant hemicellulose, it is widely used in various industries and the market now has higher requirements for its production and activity. A xylanase gene was cloned from Bacillus amyloliquefaciens and heterogenous expressed in Escherichia coli. Isopropyl-β-D-thiogalactoside (IPTG) was adopted to induce the expression of recombinate strain BA-TB-1 and response surface experiments were designed to optimize the expression conditions. The predicted activity and experimental activity were 550.139 and 548.87 U/mL, respectively, indicating that it was feasible to apply response surface method to optimize the expression conditions of xylanase. Further results showed that xylanase had relatively high enzyme activity at pH 5.0 to 6.0, proving a good acid-resistant property. Incubated at 37℃, pH 5.0 and pH 5.0-7.0 for 1 h, the residual enzyme activity remained above 68% and 50%, respectively. The results lay some foundation for the mass production of acidic xylanase.
Key words:  xylanase    Bacillus amyloliquefaciens    acid resistance    enzymatic properties    cloning and expression
收稿日期:  2020-05-24      修回日期:  2020-09-02           出版日期:  2020-12-25      发布日期:  2021-01-13      期的出版日期:  2020-12-25
基金资助: 国家自然科学基金(31901634)
作者简介:  硕士研究生(李琴讲师为通讯作者,E-mail:17888820100@163.com)
引用本文:    
郑亚伦,夏瑛,李良,等. 源于解淀粉芽孢杆菌酸性木聚糖酶酶学性质的研究[J]. 食品与发酵工业, 2020, 46(24): 58-65.
ZHENG Yalun,XIA Ying,LI Liang,et al. Enzymatic properties of acid resistant xylanase from Bacillus amyloliquefaciens[J]. Food and Fermentation Industries, 2020, 46(24): 58-65.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024535  或          http://sf1970.cnif.cn/CN/Y2020/V46/I24/58
[1] SANJIVKUMAR M, SILAMBARASAN T, BALAGURUNATHAN R, et al.Biosynthesis, molecular modeling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy[J]. International Journal of Biological Macromolecules,2018, 118:195-208.
[2] SØRENSEN H.Enzymatic hydrolysis of xylan[J].Nature,1953, 172(4 372):305–306.
[3] LI Q, SUN B G, XIONG K, et al.Improving special hydrolysis characterization into Talaromyces thermophilus F1208 xylanase by engineering of N-terminal extension and site-directed mutagenesis in C-terminal[J].International Journal of Biological Macromolecules,2017,96:451-458.
[4] MONTANÉ D, NABARLATZ D, MARTORELL A, et al.Removal of lignin and associated impurities from xylo-oligosaccharides by activated carbon adsorption[J].Industrial and Engineering Chemistry Research,2006, 45(7):2 294-2 302.
[5] KHURANA S, KAPOOR M, GUPTA S, et al.Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology[J].Indian Journal of Microbiology,2007,47(2):144-152.
[6] 刘明启,孙建义,郭爽.木聚糖酶嗜酸性、热稳定性研究进展[J].中国饲料,2004(13):21-22;25.LIU Q M, SUN J Y, GUO S.Advances in the study of eosinophilic and thermal stability of wood polysaccharides[J].China Feed, 2004(13):21-22;25.
[7] 曹钰,陆健,李胤.酸性木聚糖酶的研究进展[J].工业微生物,2005(4):41-44;50.CAO Y, LU J, LI Y, et al.Research advances in acid-stable xylanase[J].Industrial Microbiology,2005(4):41-44;50.
[8] VIIKARI L, KANTELLINEN A, SUNDQUIST J, et al.Xylanases in bleaching:From an idea to the industry[J].FEMS Microbiol Rev,1994,13(2-3):335-350.
[9] PRADE R A.Xylanases:From biology to biotechnology[J].Biotechnol Genet Eng Rev, 1996, 13:101-131.
[10] 王雅珍,李秀婷,孙宝国,等.微生物酸性木聚糖酶及其应用的研究进展[J].食品与发酵工业,2012,38(8):107-113.WANG Y Z, LI X T, SUN B G, et al.Study on microbial acidic xylanase and its application[J].Food and Fermentation Industries, 2012, 38(8):107-113.
[11] GALBE M, SASSNER P, WINGREN A, et al.Process engineering economics of bioethanol production[J].Advances in Biochemical Engineering/Biotechnology,2007,108:303-327.
[12] SRIKANTH R, SIDDARTHA G, REDDY C H S S S, et al.Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization[J].Carbohydrate Polymers,2015,123:8-16.
[13] LI Q, SUN B G, LI X, et al.Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904[J].International Journal of Biological Macromolecules, 2018,107:1 447-1 455.
[14] BAILEY M J, BIELY P, POUTANEN K.Interlaboratory testing of methods for assay of xylanase activity[J].Journal of Biotechnology,1992,23(3):257-270.
[15] MILLER G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar analytical chemistry[J] Analytical Chemistry 1959,31(3): 426-428.
[16] LI Y H, ZHANG B, CHEN X, et al.Improvement of Aspergillus sulphureus endo-β-1,4-xylanase expression in Pichia pastoris by Codon optimization and analysis of the enzymic characterization[J].Applied Biochemistry and Biotechnology, 2010,160(5):1 321-1 331.
[17] ZAPPE H, JONES D T, WOODS D R, et al.Cloning and expression of a xylanase gene from Clostridium acetobutylicum P262 in Escherichia coli[J].Applied Microbiology and Biotechnology, 1987,27(1):57-63.
[18] LIU T Y, ZHANG J G.High-level expression and characterization of Aspergillus niger ATCC 1015 xylanase B in Komagataella phaffii[J].Applied Biological Chemistry,2018, 61(4):373- 381.
[19] WONG K K, TAN L U, SADDLER J N.Multiplicity of beta-1,4-xylanase in microorganisms:Functions and applications[J].Microbiological Reviews, 1988, 52(3):305-317.
[20] CHEN Y H, LI L L, LONG L K, et al.High cell-density cultivation of phenolic acid decarboxylase-expressing Escherichia coli and 4-vinylguaiacol bioproduction from ferulic acid by whole-cell catalysis[J].Journal of Chemical Technology and Biotechnology,2018, 93:2 415-2 421.
[21] HU H F, LI L L, DING S J.An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives[J].Applied Microbiology and Biotechnology,2015, 99(12):5 071-5 081.
[22] LI Q, WU Q H, SUN B G, et al.Effect of disulfide bridge on hydrolytic characteristics of xylanase from Penicillium janthinellum[J].International Journal of Biological Macromolecules, 2018, 120: 405-413.
[23] LI Q, SUN B G, JIA H Y, et al.Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics[J].International Journal of Biological Macromolecules, 2017, 101:366-372.
[24] BAGEWADI Z K, MULLA S I, NINNEKAR H Z.Purification, characterization, gene cloning and expression of GH-10 xylanase (Penicillium citrinum isolate HZN13)[J].3 Biotech, 2016, 6(2):1-9.
[25] WEE M Y J, MURAD A M A, BAKAR F D A, et al.Expression of xylanase on Escherichia coli using a truncated ice nucleation protein of Erwinia ananas (InaA)[J].Process Biochemistry, 2019,78:25-32.
[26] KHALID A, TAYYAB M, HASHMI A S, et al.Optimization of conditions for maximal production of recombinant thermostable cellulase from Thermotoga naphthophila using E.coli BL21-codonPlus (DE3) as expression host[J].Pakistan journal of zoology, 2019, 51(4).
[27] SUBRAMANIYAN S, SANDHIA G S, PREMA P, et al.Control of xylanase production without protease activity in Bacillus sp. by selection of nitrogen source[J].Biotechnology Letters, 2001, 23(5):369-371.
[28] KR S.Cassava bagasse-low cost substrate for thermo-tolerant xylanase production using Bacillus subtilis[J].International Journal of Chem Tech Research, 2013, 5(1):394-400.
[29] GOLOTIN V A, BALABANOVA L A, NOSKOVA Y A, et al.Optimization of cold-adapted alpha-galactosidase expression in Escherichia coli.[J].Protein Expression and Purification,2016, 123:14-18.
[30] WANG H L, LI X M, MA Y H,et al.Process optimization of high-level extracellular production of alkaline pectate lyase in recombinant Escherichia coli BL21 (DE3)[J].Biochemical Engineering Journal,2015, 93:38-46.
[31] ZHANG H, SUN X, LI W J, et al.Expression and characterization of recombinant sucrose phosphorylase[J].Protein Journal,2018, 37(1): 93-100.
[32] CLAUSEN M, LAMB C J, MEGNET R, et al.PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae[J].Gene,1994, 142(1):107-112.
[33] MALIK A, ALSENAIDY A M, ELROBH M, et al.Optimization of expression and purfication of HSPA6 protein from Camelus dromedarius in E.coli.[J].Saudi Journal of Biological Sciences,2016,23(3):410-419.
[34] DIÁZ-RINCÓN D J, DUQUE I, OSORIO E, et al.Production of recombinant Trichoderma reesei cellobiohydrolase II in a new expression system based on Wickerhamomyces anomalus[J].Enzyme Research, 2017, 2017:6 980 565.
[35] DONOVAN R S, ROBINSON C W, CLICK B R.Review:Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter[J].Journal of Industrial Microbiology,1996, 16(3),145-154.
[36] LI Q Q, QI Y, CHEN J S, et al.Molecular characterization of an ice nucleation protein variant (InaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli[J].International Journal of Biological Sciences, 2012, 8(8):1 097-1 108.
[37] FAN L H, LIU N, YU M G, et al.Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO2 sequestration[J].Biotechnology and Bioengineering,2011,108:2 853-2 864.
[38] LIU J G, XING J M, CHANG T S,et al.Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods[J].Process Biochemistry,2005, 40(8):2 757-2 762.
[39] ROUSHDY M M, DESOUKY S E, ESMAEL M E, et al.Optimization and characterization of tannin acyle hydrolase produced by Aspergillus flavus var.columnaris using solid state fermentation technique[J].In New York Science Journal,14,7(3):88-98.
[40] SANDHYA C, SUMANTHA A, SZAKACS G, et al.Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation[J].Process Biochemistry,2005, 40(8):2 689-2 694.
[1] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[2] 陶大炜, 宁喜斌. 产α-环糊精葡萄糖基转移酶的菌株筛选、鉴定与酶学性质的初步研究[J]. 食品与发酵工业, 2021, 47(6): 145-151.
[3] 杨胜远, 林谦, 刘淑敏, 苏巧云, 黄慧玲. 屎肠球菌源谷氨酸脱羧酶的制备及其酶学性质研究[J]. 食品与发酵工业, 2021, 47(5): 28-34.
[4] 宋婷, 王帅静, 汪沉, 吕育财, 罗华军, 郭金玲, 龚大春. 近平滑假丝酵母ATCC 7330羰基还原酶CpCR的表达及酶学性质研究[J]. 食品与发酵工业, 2021, 47(3): 18-24.
[5] 于洁, 徐勤茜, 李子院, 刘红艳, 郝再彬, 李海云. 虎杖内生真菌Aspergillus aculeatus HZ001产β-葡萄糖苷酶的酶学特性[J]. 食品与发酵工业, 2021, 47(3): 31-35.
[6] 张梅娟, 钱朋智, 董力青, 韩杨, 汲广习, 冯镇. 一株哈茨木霉的鉴定及固态发酵产木聚糖酶条件研究[J]. 食品与发酵工业, 2021, 47(3): 43-48.
[7] 包怡, 胡友明, 朱林江, 陆跃乐, 陈小龙. 己糖氧化酶的研究进展[J]. 食品与发酵工业, 2021, 47(3): 218-223.
[8] 魏万涛, 李梦丽, 江波, 张涛. L-岩藻糖激酶/GDP-L-岩藻糖焦磷酸化酶的克隆表达及酶学性质研究[J]. 食品与发酵工业, 2020, 46(9): 18-24.
[9] 张庆芳, 王浚晨, 于爽, 刘春莹, 迟雪梅, 迟乃玉. 人体肠道中产尿酸氧化酶细菌的筛选、鉴定与酶学性质研究[J]. 食品与发酵工业, 2020, 46(8): 34-39.
[10] 宋丽丽, 闻格, 霍姗浩, 胡晓龙, 杨旭, 张志平. 白酒酒糟中产纤维素酶细菌的分离筛选和酶学性质研究[J]. 食品与发酵工业, 2020, 46(7): 43-49.
[11] 付志英, 陈晓波, 潘洁茹, 邓优锦, 赖腾强, 刘彩珍. Bacillus amyloliquefaciens KHQH-1的鉴定及其抗菌活性初步研究[J]. 食品与发酵工业, 2020, 46(6): 89-94.
[12] 田甜甜, 孙军勇, 蔡国林, 杨华, 吴殿辉, 陆健. 基于转录组学的酿酒酵母耐酸机制解析[J]. 食品与发酵工业, 2020, 46(6): 1-7.
[13] 郑丹妮, 柏玉香, 纪杭燕, 李晓晓, 王禹, 蔣彤, 金征宇. γ-CGTase酶学性质及产物特异性影响因素[J]. 食品与发酵工业, 2020, 46(5): 38-45.
[14] 邝嘉华, 黄燕燕, 胡金双, 余佳佳, 周钦育, 赵珊, 刘冬梅. 解淀粉芽孢杆菌DMBA-K4高产胞外多糖的发酵条件优化及其抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(22): 28-35.
[15] 周海岩, 周建宝, 易晓男, 李勉, 柳志强. 来源于Rhodohalobacter barkolensis的昆布多糖酶RbLam16的重组表达及生产条件优化[J]. 食品与发酵工业, 2020, 46(21): 9-15.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn