Abstract: A reaction system for converting lactic acid to caproic acid in a self-designed bioreactor was constructed, in this system, microbe in the pit mud of strong aroma Baijiu (Chinese liquor) was selected as the starting bacteria, and yellow water with high lactate acid concentration was used as the carrier. The optimum culture conditions were 40.0 g/L of lactic acid, at 37°C and pH 5.5-6.0, in these conditions, the function of caproic acid-producing and lactic acid-utilizing was strengthened when the bioreactor was filled with activated carbon and modified polyurethane sponge. Results showed that the species diversities in the fermentation broth of the bioreactors were lower than those in pit muds, which was accompanied by the obvious changes in composition of dominant microbe. The dominant prokaryotes in the fermentation broth of the reactors were the Firmicute Clostridium related to caproic acid production and lactic acid reduction. And the Aminobacterium genus involved in the degradation of amino acids increased significantly. The ethyl caproate content in the original liquor were higher than that in conventional liquor fermentation when enhanced yellow water was added in different stages of Baijiu fermentation. When enhanced yellow water was added at the beginning of fermentation, the ethyl caproate content was 561.9 mg/L, which was 330.9% higher than that of the control group. After 7 days of fermentation, the ethyl caproate content increased by 154.6% and the ethyl lactate content decreased by 9.8%. In this study, domestication of pit mud bacteria and applying them to Baijiu fermentation were confirmed useful to increase ethyl caproate content while decreasing ethyl lactate content in production of strong aroma Baijiu, which is of positive significance to improve liquor flavor and quality.
王琪,李一关,许长山,等. 窖泥中降乳增己菌群的驯化及其在白酒发酵中的应用[J]. 食品与发酵工业, 2020, 46(24): 167-174.
WANG Qi,LI Yiguan,XU Changshan,et al. Domestication of caproic acid-producing and lactic acid-utilizing microbe in the pit muds and its application in Baijiu fermentation[J]. Food and Fermentation Industries, 2020, 46(24): 167-174.
JIN G, ZHU Y, XU Y.Mystery behind Chinese liquor fermentation [J].Trends in Food Science & Technology, 2017, 63:18-28.
[2]
韩金宏,励建荣.我国白酒行业的现状和发展前景 [J].农产品加工(学刊), 2006(2):50-52.HAN J H, LI J R.Current situation and development prospect of Chinese liquor industry[J].Academic Periodical of Farm Products Processing, 2006(2):50-52.
[3]
李维青. 浓香型白酒与乳酸菌、乳酸、乳酸乙酯 [J].酿酒, 2010, 37(3):90-93.LI W Q.Relationship between luzhou flavor liquor, lactic acid bacteria, lactic acid and ethyl lactate[J].Liquor Making, 2010, 37(3):90-93.
[4]
赖登燡. 浓香型白酒生产中“增己降乳”科学、合理性的研究 [J].四川食品与发酵, 2007(5):4-8.LAI D Y.Research on “ethyl caproate-icreasing & ethyl lactate-decreasing” in Lu-zhou flavor liquor[J].Sichuan Food and Fermentation, 2007,(5):4-8.
[5]
何培新,胡晓龙,郑燕,等.中国浓香型白酒“增己降乳”研究与应用进展 [J].轻工学报, 2018, 33(4):1-12.HE P X, HU X L, ZHENG Y, et al.Research and application progress of "ethyl caproate-increasing and ethyl lactate-decreasing" in brewing of Chinese Luzhou-flavor liquor [J].Journal of Light Industry, 2018, 33(4):1-12.
[6]
施安辉,安文龙,杨立庆,等.浓香型白酒“增己降乳”的微生物学技术 [J].酿酒科技, 1994, 20(5):8-10.SHI A H, AN W L, YANG L Q, et al.Microbiological techniques of “ethyl caproate-increasing and ethyl lactate-decreasing” in brewing of Luzhou-flavor liquor [J].Liquor-Making Science & Technology, 1994,20(5):8-10.
[7]
ZHU X Y, ZHOU Y, WANG Y,et al.Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6 [J].Biotechnology for Biofuels, 2017, 10(1):102.
[8]
CAVALCANTE W D A, LEITÃO R C, GEHRING T A,et al.Anaerobic fermentation for n-caproic acid production:A review [J].Process Biochemistry, 2017, 54(3):106-119.
[9]
ZHU X Y, TAO Y, LIANG C,et al.The synthesis of n-caproate from lactate:A new efficient process for medium-chain carboxylates production [J].Scientific Reports, 2015,5:14 360.
[10]
任剑波,姚万春,唐玉明,等.不同材质窖池的酒醅微生物分布差异 [J].酿酒, 2015, 42(5):22-25.REN J B, YAO W C, TANG Y M, et al.Microbial distribution differences in fermented grains in made of different materials cellar[J].Liquor Making, 2015, 42(5):22-25.
[11]
范文来,徐岩.白酒窖泥挥发性成分研究 [J].酿酒, 2010, 37(3):24-31.FAN W L, XU Y.Volatile compounds of fermented-mud in baijiu(Chinese liquor) [J].Liquor Making, 2010, 37(3):24-31.
[12]
蔡鹏飞,邵传贞,姚庆乐,等.窖泥在酿酒中的两个作用 [J].酿酒, 2011, 38(5):59-61.CAI P F, SHAO C Z, YAO Q L, et al.Cellar mud in the role of the two[J].Liquor Making, 2011, 38(5):59-61.
[13]
郎召伟. 泸型酒酿造过程中风味物质变化分析[D].无锡:江南大学, 2015.LANG Z W.Analysis of flavor compounds in the production of Luzhou-flavor liquor[D].Wuxi:Jiangnan University, 2015.
[14]
任雪,魏晓庆,韩雨辰,等.无窖泥发酵生产浓香型白酒 [J].食品与发酵工业,2020,46(7):105-109.REN X, WEI X Q, HAN Y C, et al.Production of Luzhou-flavor Baijiu by fermentation without cellar mud [J].Food of Fermentation Industries, 2020, 46(7):105-109.
[15]
郭通航,陈建新.GC双内标法同时测定发酵液中己酸和己酸乙酯的含量 [J].酿酒科技, 2015(2):114-117.GUO T H, CHEN J X.Determination of caproic acid and ethyl caproate content simultaneously in fermenting liquid by GC and double-internal standard method[J].Liquor-Making Science & Technology, 2015, (2):114-117.
[16]
熊君燕,李小东,谢圣凯,等.清香型白酒中乳酸菌和酵母菌的相互作用 [J].微生物学通报, 2017, 44(8):1 767-1 776.XIONG J Y, LI X D, XIE S K, et al.Interaction between lactic acid bacteria and yeasts in light-aroma liquor [J].Microbiology China, 2017, 44(8):1 767-1 776.
[17]
EDGER R C,HAAS B J,CLEMENTE J C,et al.Uchime improves sensitivity and speed of chimera detection [J].Bioinformatics, 2011, 27(16):2 194-2 200.
[18]
HAAS B J, GEVERS D, EARL A M.Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons [J].Genome Research, 2011,21(3):494-504.
[19]
EDGAR R C.Uparse:Highly accurate OTU sequences from microbial amplicon reads [J].Nature Methods, 2013, 10(10):996-998.
[20]
QIONG W, GEORGE M G, JAMES M T, et al.Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy [J].Applied and Environmental Microbiology, 2007, 73(16):5 261-5 267.
[21]
QUAST C, PRUEESSE E, YILMAZ P, et al.The sliva ribosomal RNA gene database project: Improved data processing and web-based tools [J].Nucleic Acids Research, 2013, 41:590-596.
[22]
沈怡方. 白酒生产技术全书 [M].北京:中国轻工业出版社,1998.SHEN Y F.Baijiu Production Technology Book [M].Beijing:China Light Industry Press, 1998.
[23]
曾田,胡晓龙,马兆,等.浓香型白酒窖泥中“增己降乳”原核微生物群落多样性解析 [J].轻工学报, 2017, 32(6):12-19.ZENG T, HU X L, MA Z, et al.Analysis of prokaryotic mirobial community diversity with the capability of caproic acid-producing and lactic acid-utilizing in the pit muds of Luzhou-flavor liquor [J].Journal of Light Industry, 2017, 36(6):12-19.
[24]
HU X L, DU H, XU Y.Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production [J].International Journal of Food Microbiology, 2015, 214:116-122.
[25]
XUE Z K.First polyphasic identification of clostridium celerecrescens from Luzhou-flavor liquor pit mud [J].Journal of Chemical & Pharmaceutical Research, 2015, 7(4):1 222-1 230.
[26]
胡晓龙,王康丽,余苗,等.浓香型窖泥原核微生物群落多样性及其在窖池中的空间异质性 [J].食品与发酵工业,2020,46(11):77-84.HU X L, WANG K L, YU M, et al.Biodiversity and spatial heterogeneity of prokaryote community in strong-flavor Baijiu fermentation pit muds [J].Food and Fermentation Industries, 2020, 46(11):77-84.
[27]
BAENA S, FARDEAU M L, LABAT M,et al.Aminobacterium colombiensegen.nov.sp.nov., an amino acid-degrading anaerobe isolated from anaerobic sludge [J].Anaerobe, 1998, 4(5):241-250.
[28]
BAENA S, FARDEAU M L, LABAT M,et al.Aminobacterium mobile sp.nov., a new anaerobic amino-acid-degrading bacterium [J].International Journal of Systematic and Evolutionary Microbiology, 2000, 50(1):259-264.
[29]
栗连会. 泸型酒酒醅中乳酸菌和乳酸降解菌的多样性和代谢特性 [D].无锡:江南大学, 2016.JIA L H.Diversity and metabolic characteristics of lactic acid bacteria and lactate-degrading bacteria in fermented grains of Luzhou-flavor liquor[D].Wuxi:Jiangnan University, 2016.
[30]
戴晓虎,何进,严寒,等.游离氨调控对污泥高含固厌氧消化反应器性能的影响 [J].环境科学, 2017, 38(2):679-687.DAI X H, HE J, YAN H, et al.Effects of free ammonia regulation on the performance of high solid anaerobic digesters with dewatered sludge[J].Environmental Science, 2017,38(2):678-687.
[31]
夏培禹,万自然,左翔,等.复合窖泥功能菌液的制作及在浓香型白酒生产中的应用 [J].酿酒科技, 2020(3):112-115.XIA P Y, WAN Z R, ZUO X, et al.Preparation of compound functional bacterial fluid and its application in nongxiang baijiu production[J].Liquor-Making Science & Technology, 2020(3):112-115.