Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (1): 8-13    DOI: 10.13995/j.cnki.11-1802/ts.025066
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
高表达MAL62基因对面包酵母耐高糖的影响
孙溪1,2*, 刘海晴1,2, 张军1,2, 范志华1,2, 黄亮3
1(天津农学院 食品与生物工程学院,天津, 300384)
2(天津市农副产品深加工技术工程中心,天津, 300384)
3(天津农学院 农学与资源环境学院,天津, 300384)
Overexpression of MAL62 increased sugar tolerance of baker’s yeast
SUN Xi1,2*, LIU Haiqing1,2, ZHANG Jun1,2, FAN Zhihua1,2, HUANG Liang3
1(College of Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China)
2(Tianjin Engineering Research Center of Agricultural Products Processing, Tianjin 300384, China)
3(College of Agronomy and Resource Environment, Tianjin Agricultural University, Tianjin 300384, China)
下载:  HTML   PDF (2880KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 面包酵母(Saccharomyces cerevisiae)的抗逆性对于烘焙工业至关重要。以前期获得的耐冷冻酵母突变株B+MAL62为研究对象,测定其在高糖环境下的生长特性、形态特征、胞内海藻糖与甘油的积累以及产气的变化,并与市售高糖酵母进行对比。研究发现在质量分数为40%~60%的糖胁迫环境下,B+MAL62菌株的胞内海藻糖与甘油水平分别比对照菌株提升55.03%~64.27%与1.2~1.3倍,且高糖环境下B+MAL62具有更好的细胞形态稳定性,其产气速度以及最终产气量可优于市售高糖酵母。结果表明,麦芽糖酶编码基因MAL62高表达可增强面包酵母耐高糖能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙溪
刘海晴
张军
范志华
黄亮
关键词:  面包酵母  海藻糖  甘油  麦芽糖酶  产气    
Abstract: Stress tolerance of baker’s yeast (Saccharomyces cerevisiae) is critical to the baking industry. In this study, the high sugar tolerance of cryotolerant yeast B+MAL62 obtained previously was determined and its growth characteristics, morphological stability, intracellular trehalose and glycerol content and gas production under high sugar stress were tested and compared with the commercially high-sugar tolerant yeast. Results showed that compared with the control strain, at 40%-60% sugar stress, the intracellular trehalose and glycerol levels in B+MAL62 strain were increased by 55.03%-64.27% and 1.2-1.3 times, respectively. Moreover, its morphological stability, gas production rate and final gas production in high sugar stress were better than the control strain and the commercial sugar-tolerance yeast. These results showed that overexpression of MAL62 could improve the sugar tolerance of baker's yeast. The study reveals a new way of enhancing multi-tolerance of baker’s yeast and improving the knowledge of how the maltose metabolism affects the multi-tolerance of baker’s yeast. This study provides a valuable insight into breeding of novel multi-resistant baker's yeast strains and a better understanding of other sugar metabolism, which has the potential to promote the technological level of yeast industry.
Key words:  baker’s yeast    trehalose    glycerol    maltase    gas production
收稿日期:  2020-07-15      修回日期:  2020-08-12                发布日期:  2021-02-03      期的出版日期:  2021-01-15
基金资助: 国家自然科学基金项目(31701569); 天津市青年拔尖人才项目(TJTZJH-QNBJRC-1-19)
作者简介:  博士,讲师(通讯作者,E-mail:sunxi@tjau.edu.cn)
引用本文:    
孙溪,刘海晴,张军,等. 高表达MAL62基因对面包酵母耐高糖的影响[J]. 食品与发酵工业, 2021, 47(1): 8-13.
SUN Xi,LIU Haiqing,ZHANG Jun,et al. Overexpression of MAL62 increased sugar tolerance of baker’s yeast[J]. Food and Fermentation Industries, 2021, 47(1): 8-13.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025066  或          http://sf1970.cnif.cn/CN/Y2021/V47/I1/8
[1] KO E,KIM M,PARK Y,et al.Heterologous expression of the carrot Hsp17.7 gene increased growth,cell viability,and protein solubility in transformed yeast (Saccharomyces cerevisiae) under heat,cold,acid,and osmotic stress conditions[J].Current Microbiology,2017,74(8):952-960.
[2] 时桂芹,任菲,谢冰宗,等.高糖胁迫对酿酒酵母抗氧化活性及代谢的影响[J].食品工业科技,2019,40(20):94-100.
SHI G Q,REN F,XIE B Z,et al.Effect of high-glucose condition on antioxidant activity and metabolism of Saccharomyces cerevisiae[J].Science and Technology of Food Industry,2019,40(20):94-100.
[3] 张翠英,林雪,孙溪,等.敲除MIG1同时过表达MAL62面包酵母的发酵性能[J].天津科技大学学报,2014,29(3):1-5.
ZHANG C Y,LIN X,SUN X,et al.Fermentation abilities of the recombined strain BPM-M and its overexpressing MAL62 along with deletion of MIG1[J].Journal of Tianjin University of Science & Technology, 2014,29(3):1-5.
[4] SUN X,ZHANG C Y,WU M Y,et al.MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker’s yeast in lean dough[J].Microbial Cell Factories,2016,15:54-61.
[5] CHENG H J,SUN Y H,CHANG H W,et al.Compatible solutes adaptive alterations in arthrobacter simplex during exposure to ethanol,and the effect of trehalose on the stress resistance and biotransformation performance[J].Bioprocess and Biosystems Engineering,2020,43(5):895-908.
[6] BELL W,SUN W N,HOHMANN S,et al.Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex[J].Journal of Biological Chemistry,1998,273(50):33 311-33 319.
[7] STAMBUK B U,PANEK A D,CROWE J H,et al.Expression of high-affinity trehalose-H+ symport in Saccharomyces cerevisiae[J].Biochimica Et Biophysica Acta-General Subjects,1998,1 379(1):118-128.
[8] JULES M,GUILLOU V,FRANCOIS J,et al.Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae[J].Appl Environ Microbiol,2004,70(5):2 771-2 778.
[9] KOSAR F,AKRAM NA,SADIQ M,et al.Trehalose:A key organic osmolyte effectively involved in plant abiotic stress tolerance[J].Journal of Plant Growth Regulation,2019,38(2):606-618.
[10] PANADERO J,RANDEZ-GIL F,PRIETO J A.Validation of a flour-free model dough system for throughput studies of baker’s yeast[J].Applied and Environmental Microbiology,2005,71(3):1 142-1 147.
[11] FERREIRA JC,PASCHOALIN VMF,PANEK AD,et al.Comparison of three different methods for trehalose determination in yeast extracts[J].Food Chemistry,1997,60(2):251-254.
[12] 刘青,刘朝霞,李志勇,等.国产葡萄酒中甘油含量的调查与分析[J].中国食品卫生杂志,2015,27(2):171-175.
LIU Q,LIU Z X,LI Z Y,et al.Investigation of glycerol content in domestic wines[J].Chinese Journal of Food Hygiene,2015,27(2):171-175.
[13] 张守文,张智武.国内市售面包酵母发酵特性及其适用性的研究[J].中国粮油学报,1999(6):12-18.
ZHANG S,ZHANG Z W.Fermentation characteristics and suitability of baker’s yeast on domestic market[J].Journal of the Chinese Cereals and Oils Association,1999(6):12-18.
[14] TOKASHIKI T,YAMAMOTO H,WATANABE H,et al.A functional compound contained in sugar cane molasses enhances the fermentation ability of baker's yeast in high-sugar dough[J].Journal of General and Applied Microbiology,2011,57(5):303-307.
[15] DE WINDERICKX,WINDE J H,CRAUWELS M,et al.Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae:Novel variations of STRE-mediated transcription control?[J].Molecular & General Genetics,1996,252(4):470-482.
[16] MIZUSHIMA D,IWATA H,ISHIMAKI Y,et al.Two glycerol 3-phosphate dehydrogenase isogenes from Candida versatilis SN-18 play an important role in glycerol biosynthesis under osmotic stress[J].Journal of Bioscience and Bioengineering,2016,121(5):523-529.
[17] MARTINEZ-PASTOR MT,MARCHLER G,SCHULLER C,et al.The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)[J].The EMBO Journal,1996,15(9):2 227-2 235.
[18] DE NADAL E,ALEPUZ PM,POSAS F.Dealing with osmostress through MAP kinase activation[J].Embo Reports,2002,3(8):735-740.
[19] SUN X,ZHANG J,FAN Z-H,et al.MAL62 Overexpression enhances freezing tolerance of baker’s yeast in lean dough by Enhancing Tps1 activity and maltose metabolism[J].Journal of Agricultural and Food Chemistry,2019,67(32):8 986-8 993.
[20] 李新,郑兆娟,岳泰稳,等.以纤维二糖为底物利用重组大肠杆菌合成海藻糖[J].食品科学,2019,40(6):180-186.
LI X,ZHENG Z J,YUE T W,et al. Biosynthesis of trehalose from cellobiose by recombinant Escherichia coli[J].Food Science,2019,40(6):180-186.
[21] 倪松,王聪,宋旭,等.高渗环境假丝酵母胞内甘油和海藻糖代谢研究[J].食品研究与开发,2016,37(5):134-136.
NI S,WANG C,SONG X,et al.Metabolism of glycerol and trehalose in the cells of Candida versatilis in hypertonic environment[J].Food Research and Development,2016,37(5):134-136.
[22] VAZQUEZ J,GRILLITSCH K,DAUM G,et al.The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts[J].Food Microbiology,2019,78:143-154.
[23] 陆信曜,诸葛斌,宗红,等.产甘油假丝酵母HOG途径应答研究进展[J].中国科学:生命科学,2019,49(5):585-594.
LU X Y,ZHUGE B,ZONG H,et al.Advances in the HOG pathway of Candida glycerinogenes[J].Scientia Sinica (Vitae),2019,49(5):585-594.
[24] ASLANKOOHI E,REZAEI M N,VERVOORT Y,et al.Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation[J].PloS One,2015,10(3):e0 119 364.
[25] SHARMA SC.A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae[J].FEMS Microbiology Letters,1997,152(1):11-15.
[26] 赵美琳,诸葛斌,陆信曜,等.工业酵母抗逆机理研究进展[J].微生物学通报,2019,46(5):1 155-1 164.
ZHAO M L,ZHUGE B,LU X Y,et al.Research progress in stress tolerance of industrial yeasts[J].Microbiology China,2019,46(5):1 155-1 164.
[27] KAPTEYN JC,TER RIET B,VINK E,et al.Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall[J].Mol Microbiol,2001,39(2):469-480.
[28] PANADERO J,PALLOTTI C,RODRIGUEZ-VARGAS S,et al.A downshift in temperature activates the high osmolarity glycerol (HOG) pathway,which determines freeze tolerance in Saccharomyces cerevisiae[J].Journal of Biological Chemistry,2006,281(8):4 638-4 645.
[29] HUANG L,WAN J,HUANG W,et al.Effects of glycerol on water properties and steaming performance of prefermented frozen dough[J].Journal of Cereal Science,2011,53(1):19-24.
[1] 陈敦武, 刘翠翠, 陈雄, 代俊, 王志, 姚鹃, 李沛, 李欣. 不同食品酵母对葡萄糖的流加强度和热激压力的生理响应[J]. 食品与发酵工业, 2021, 47(8): 21-26.
[2] 孙玉霞, 赵新节. 美极梅奇酵母的代谢特性及其在葡萄酒生产中的应用前景[J]. 食品与发酵工业, 2021, 47(4): 305-311.
[3] 张敏倩, 刘功良, 费永涛, 白卫东, 艾连中, 俞剑燊. 利用蜂蜜接合酵母合成海藻糖[J]. 食品与发酵工业, 2021, 47(3): 107-113.
[4] 刘蒙佳, 周强, 戴玉梅, 雷昌贵, 丁立云. 不同解冻方法及添加抗冻剂处理对冷冻海鲈鱼鱼片解冻品质的影响[J]. 食品与发酵工业, 2020, 46(8): 210-218.
[5] 王广浩, 高红波, 樊双喜, 李国辉, 钟其顶, 李艳. 气相色谱-质谱法检测葡萄酒中外源工业甘油副产物[J]. 食品与发酵工业, 2020, 46(16): 215-219.
[6] 曹茜, 王丹, 袁永俊. 脂肪酶位置选择性及其应用在功能性结构甘油三酯合成中的研究进展[J]. 食品与发酵工业, 2020, 46(11): 295-301.
[7] 王希晖, 刘洪玲, 隋松森, 杨少杰, 王瑞明, 王腾飞. 海藻糖合酶在枯草芽孢杆菌中的高效表达[J]. 食品与发酵工业, 2019, 45(7): 29-36.
[8] 苗佳, 王彩喆, 牛丹丹, Nokuthula Peace Mchunu, 田康明, Suren Singh, Kugenthiren Permaul, 王正祥. 海藻糖快速检测方法的建立与初步应用[J]. 食品与发酵工业, 2019, 45(23): 227-231.
[9] 王惊春, 田康明, 苗佳, 王彩喆, 金鹏, 王正祥. 增强海藻糖胞内积累提高大肠杆菌耐受性与乙醇产率[J]. 食品与发酵工业, 2019, 45(21): 15-21.
[10] 冯西娅, 黄威, 索化夷, 王洪伟, 张玉. 牡丹籽油甘油三酯结构及理化特性分析[J]. 食品与发酵工业, 2019, 45(21): 258-263.
[11] 阚宝军, 董晋军, 刘晖, 占米林, 许国超, 韩瑞枝, 倪晔. 3-磷酸甘油醛脱氢酶促进谷氨酸棒杆菌发酵生产L-精氨酸和L-鸟氨酸[J]. 食品与发酵工业, 2019, 45(15): 9-16.
[12] 魏瑶, 钟其顶, 王道兵, 李国辉. 橄榄油中甘油二酯异构体测定方法研究与应用初探[J]. 食品与发酵工业, 2019, 45(10): 201-207.
[13] 付雪艳, 吴娜, 袁凯, 王锡昌. 固相萃取整体捕集剂-气相色谱-质谱联用仪结合电子鼻技术对中华绒螯蟹关键脂质热氧化体系的构建[J]. 食品与发酵工业, 2018, 44(9): 254-261.
[14] 王振栋, 宿玲恰, 吴敬. Sulfolobus acidocaldarius ATCC 33909麦芽寡糖基海藻糖水解酶突变株的酶学性质及其制备海藻糖的条件优化[J]. 食品与发酵工业, 2018, 44(8): 14-19.
[15] 万倪彤, 王志耕, 梅林, 等. 富含1,3-甘油二酯猪脂肪的热稳定性分析[J]. 食品与发酵工业, 2018, 44(6): 67-75.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn