Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (6): 18-25    DOI: 10.13995/j.cnki.11-1802/ts.025179
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究
冯鑫1, 马良1,2, 戴宏杰1,3, 付余1, 余永1, 朱瀚昆1, 王红霞1, 张宇昊1,2,3*
1(西南大学 食品科学学院,重庆 400715)
2(西南大学 前沿交叉学科研究院,生物学研究中心,重庆 400715)
3(软物质材料化学与功能制造重庆市重点实验室,重庆 400715)
The study on stability of food-grade Pickering emulsion and the loading of β-carotene
FENG Xin1, MA Liang1,2, DAI Hongjie1,3, FU Yu1, YU Yong1, ZHU Hankun1, WANG Hongxia1, ZHANG Yuhao1,2,3*
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China)
3(Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Chongqing 400715, China)
下载:  HTML   PDF (7376KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文系统研究了食品级明胶基Pickering乳液的pH、离子强度和热稳定性,并利用3种性质的Pickering乳液实现对β-胡萝卜素的装载。结果表明,在等电点(pH 5)附近,几乎不能形成稳定的乳液。提高分散液的静电斥力,有利于形成均匀的Pickering乳液;NaCl的添加导致静电屏蔽的产生,使液滴粒径和乳析指数(creaming index,CI)增加,随着离子强度的进一步增加(100~500 mmol/L),由于液滴间相互作用的改善,使得液滴粒径和CI相对减小并趋向于稳定;乳液经过加热处理后,网络结构被破坏,液滴聚集,导致液滴粒径和CI随着处理时间的延长而增加;β-胡萝卜素的装载研究表明,高黏弹性Pickering乳液可显著降低β-胡萝卜素的光降解,经过 30 d的储藏(4 ℃)仍可保留70%以上。此外,高黏弹性乳液可显著提高β-胡萝卜素的生物可及性,更有利于体内消化吸收。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯鑫
马良
戴宏杰
付余
余永
朱瀚昆
王红霞
张宇昊
关键词:  食品级  明胶纳米颗粒  Pickering乳液  稳定性  β-胡萝卜素    
Abstract: The pH, ionic strength and thermal stability of food-grade Pickering emulsion based on gelatin were studied systematically, and three kinds of Pickering emulsion were used to realize the loading of β-carotene. The results showed that stable Pickering emulsion could hardly be formed at the near isoelectric point (pH 5). Increasing the electrostatic repulsion force of the GNPs dispersion was beneficial to the formation of uniform Pickering emulsion. Meanwhile, the addition of NaCl could increase droplet size and creaming (CI) due to electrostatic shielding. With the further increase of ionic strength (100-500 mmol/L), the droplet size and the CI showed a decrease and tend to be stable due to the improvement of the interaction among droplets. Furthermore, the droplet size and CI increased with the prolongation of heating time. The study of β-carotene loading showed that the high viscoelastic Pickering emulsion could significantly reduce the photo-degradation of β-carotene, and remained over 70% after 30 d of storage (4 ℃). Moreover, the high viscoelastic emulsion would significantly improve the bio-accessibility of β-carotene, which was more conducive to digestion and absorption in vivo.
Key words:  food-grade    gelatin nanoparticles    Pickering emulsion    stability    β-carotene
收稿日期:  2020-07-27      修回日期:  2020-09-27           出版日期:  2021-03-25      发布日期:  2021-04-15      期的出版日期:  2021-03-25
基金资助: “十三五”国家重点研发计划重点专项(2016YFD0400200);国家自然科学基金面上项目(31671881;31972102;31901683);重庆市基础科学与前沿技术研究项目(cstc2018jcyjA0939);中央高校基本科研业务费重点项目(XDJK2019B028)
作者简介:  博士研究生(张宇昊教授为通讯作者,E-mail:zhy1203@163.com)
引用本文:    
冯鑫,马良,戴宏杰,等. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
FENG Xin,MA Liang,DAI Hongjie,et al. The study on stability of food-grade Pickering emulsion and the loading of β-carotene[J]. Food and Fermentation Industries, 2021, 47(6): 18-25.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025179  或          http://sf1970.cnif.cn/CN/Y2021/V47/I6/18
[1] 谭天仪, 李璟, 夏锐, 等.超细化豆渣作为皮克林乳液稳定剂的特性研究[J].食品与发酵工业, 2020,46(2):47-54.TAN T Y, LI J, XIA R, et al.Preparation of ultrafine okara and its characteristics as a stabilizer for Pickering emulsion[J].Food and Fermentation Industries, 2020, 46(2):47-54.
[2] 刘兴丽, 赵双丽, 肖乃勇, 等.马铃薯蛋白微凝胶对皮克林乳液乳化特性的影响[J].轻工学报, 2019,34(5):1-9.LIU X L, ZHAO S L, XIAO N Y, et al.Effect of potato protein microgel on emulsifying properties of Pickering emulsion[J].Journal of Light Industry, 2019, 34(5):1-9.
[3] SU J, GUO Q, CHEN Y, et al.Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles[J].Food Hydrocolloids, 2020,98:105276.
[4] LIU G, WANG Q, HU Z, et al.Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the pickering emulsion delivery of curcumin[J].Journal of Agricultural and Food Chemistry, 2019,67(18):5 212-5 220.
[5] 朱雨晴, 刘伟, 陈兴, 等.食品级皮克林乳液的稳定机制及稳定性研究进展[J].食品工业科技, 2018,39(7):315-322.ZHU Y Q, LIU W, CHEN X, et al.Advances in stabilization mechanism and stability control of food grade Pickering emulsion[J].Science and Technology of Food Industry, 2018, 39(7):315-322.
[6] 刘洋.大豆蛋白纳米颗粒稳定的乳液及其油凝胶性质[D].无锡:江南大学, 2016.LIU Y.Properties of emulsions stabilized with soy protein nanoparticles and their oleogels[D].Wuxi:Jiangnan University, 2016
[7] DESTRIBATS M, ROUVET M, GEHIN-DELVAL C, et al.Emulsions stabilised by whey protein microgel particles:Towards food-grade Pickering emulsions[J].Soft Matter, 2014,10(36):6 941-6 954.
[8] ZHU X, ZHENG J, LIU F, et al.Freeze-thaw stability of Pickering emulsions stabilized by soy protein nanoparticles.Influence of ionic strength before or after emulsification[J].Food Hydrocolloids, 2018,74:37-45.
[9] DEGNER B M, CHUNG C, SCHLEGEL V, et al.Factors influencing the freeze-thaw stability of emulsion-based foods[J].Comprehensive Reviews in Food Science and Food Safety, 2014,13(2):98-113.
[10] WEI Z, HUANG Q.Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility[J].Food Hydrocolloids, 2019,93:68-77.
[11] ZHU Y, MCCLEMENTS D J, ZHOU W, et al.Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels[J].Food Chemistry, 2020,303:125 401.
[12] GE S, XIONG L, LI M, et al.Characterizations of Pickering emulsions stabilized by starch nanoparticles:Influence of starch variety and particle size[J].Food Chemistry, 2017,234:339-347.
[13] 米雪, 刘树兴, 曾桥, 等.响应面法优化超声辅助提取柿皮类胡萝卜素及其体外抗氧化性研究[J].中国调味品, 2019,44(11):26-31.MI X, LIU S X, ZENG Q, et al.Optimization of ultrasound-assisted extraction of carotenoids from persimmon peel by response surface methodology and its antioxidant activity in vitro[J].China Condiment, 2019, 44(11):26-31.
[14] LU Y, MAO L, ZHENG H, et al.Characterization of β-carotene loaded emulsion gels containing denatured and native whey protein[J].Food Hydrocolloids, 2020,102:105 600.
[15] RODRIGUES R M, RAMOS P E, CERQUEIRA M F, et al.Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation[J].Food Chemistry, 2020,314:126 157.
[16] LIN Q, LIANG R, ZHONG F, et al.Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions[J].Food Hydrocolloids, 2018,84:303-312.
[17] CHEN L, YOKOYAMA W, LIANG R, et al.Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion[J].Food Hydrocolloids, 2020,100:105 177.
[18] DAI L, SUN C, WEI Y, et al.Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles[J].Food Hydrocolloids, 2018,74:239-248.
[19] MAO L, MIAO S, YUAN F, et al.Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes[J].Food Research International, 2018,103:1-7.
[20] ROOHINEJAD S, OEY I, WEN J, et al.Formulation of oil-in-water β-carotene microemulsions:Effect of oil type and fatty acid chain length[J].Food Chemistry, 2015,174:270-278.
[21] FENG X, DAI H, MA L, et al.Food-grade gelatin nanoparticles:preparation, characterization, and preliminary application for stabilizing pickering emulsions[J].Foods, 2019,8(10):479.
[22] FENG X, DAI H, MA L, et al.Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles:Influence of the nanoparticles concentration[J].Colloids and Surfaces B:Biointerfaces, 2020.196:111 294.
[23] COESTER C J,LANGER K,VON BRIESEN H,et al.Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake[J].Journal of Microencapsulation, 2000,17(2):187-193.
[24] LIU F, TANG C.Soy glycinin as food-grade Pickering stabilizers:Fabrication of gel-like emulsions and their potential as sustained-release delivery systems for β-carotene[J].Food Hydrocolloids, 2016,56:434-444.
[25] YUAN Y, GAO Y, ZHAO J, et al.Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions[J].Food Research International, 2008,41(1):61-68.
[26] TAN H, ZHAO L, TIAN S, et al.Gelatin particle-stabilized high-internal phase emulsions for use in oral delivery systems:protection effect and in vitro digestion study[J].Journal of Agricultural and Food Chemistry, 2017,65(4):900-907.
[27] LIU W, WANG J, MCCLEMENTS D J, et al.Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles:Enhancement of carotenoid stability and bioaccessibility[J].Journal of Functional Foods, 2018,40:527-535.
[28] 王启明, 唐瑜婉, 杨雅轩, 等.pH对麦醇溶蛋白/槲皮素相互作用及其Pickering乳液特性的影响[J].食品科学, 2020,41(20):27-34.WANG Q M, TANG Y W, YANG Y X, et al.Effects of pH on the interaction of wheat gliadin/quercetin and pickering emulsion properties[J].Food Science, 2020,41(20):27-34.
[29] 张亚珍, 熊文飞, 裴亚琼, 等.盐离子对花生粕分离蛋白纳米粒子及其稳定Pickering乳液特性的影响[J].食品科学, 2019,40(24):1-7.ZHANG Y Z, XIONG W F,PEI Y Q, et al.Effects of salt ions on the properties of peanut protein isolate nanoparticles and pickering emulsion stabilized with the nanoparticles[J].Food Science, 2019,40(24):1-7.
[30] LIMA CARDIAL M R, PAULA H C B, DA SILVA R B C, et al.Pickering emulsions stabilized with cashew gum nanoparticles as indomethacin carrier[J].International Journal of Biological Macromolecules, 2019,132:534-540.
[31] DAI H, LI Y, MA L, et al.Fabrication of cross-linked β-lactoglobulin nanoparticles as effective stabilizers for Pickering high internal phase emulsions[J].Food Hydrocolloids, 2020,109:106 151.
[32] KASIRI N, FATHI M.Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions[J].International Journal of Biological Macromolecules, 2018,106:1 023-1 031.
[33] LIU W, GAO H, MCCLEMENTS D J, et al.Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels[J].Food Hydrocolloids, 2019,88:210-217.
[1] 张涛, 邓思, 陈艳红, 杜希萍. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J]. 食品与发酵工业, 2021, 47(9): 8-15.
[2] 阮雁春, 彭旭东, 杨丹. 花生蛋白水解物对色拉酱贮藏稳定性的影响[J]. 食品与发酵工业, 2021, 47(8): 96-100.
[3] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[4] 吴唯娜, 冯洁茹, 方静宇, 邵平, 孙培龙, 徐靖, 李振皓. 铁皮石斛酶解多糖对姜黄素乳液功能性质的影响[J]. 食品与发酵工业, 2021, 47(5): 63-70.
[5] 王伟佳, 高晓夏月, 刘爱国, 刘立增, 王鹏程, 杨毅. 不同热处理无乳糖酸奶与普通酸奶品质的比较[J]. 食品与发酵工业, 2021, 47(5): 99-104.
[6] 王存堂, 高增明, 张福娟, 朱宏菲, 周庆雯, 孔保华. 洋葱皮乙醇提取物对生鲜猪肉色泽、脂质和蛋白质氧化稳定性的影响[J]. 食品与发酵工业, 2021, 47(3): 87-94.
[7] 姜曼. 蛋白质基Pickering乳液的研究进展[J]. 食品与发酵工业, 2021, 47(3): 259-264.
[8] 马亚琴, 贾蒙, 张晨. 高压均质技术在果汁加工中的应用[J]. 食品与发酵工业, 2021, 47(3): 265-273.
[9] 彭松林, 潘成磊, 康梦瑶, 李懿璇, 赵紫悦, 郑仁兵, 尚永彪. 卤烤鸭中类黑精的提取及其抗氧化活性与化学稳定性研究[J]. 食品与发酵工业, 2021, 47(2): 22-29.
[10] 孙烨, 李英浩, WULANDARI, 吕丽爽, 张秋婷. 超声波预处理对玉米醇溶蛋白结构及其Pickering乳液稳定性的影响[J]. 食品与发酵工业, 2021, 47(1): 97-106.
[11] 陈聪, 胡长利, 谢晶. 浓缩与冻结方式对牛乳品质的影响[J]. 食品与发酵工业, 2021, 47(1): 214-221.
[12] 祁立波, 吴超, 钟利敏, 尚珊, 董秀萍, 林松毅. 婴幼儿营养包组成及质量控制现状分析[J]. 食品与发酵工业, 2021, 47(1): 293-302.
[13] 常馨月, 罗惟, 陈程莉, 董全. 奇亚籽油微胶囊贮藏稳定性及缓释动力学[J]. 食品与发酵工业, 2020, 46(9): 108-114.
[14] 厉妍青, 范柳萍. 槐米浊汁饮料稳定性研究[J]. 食品与发酵工业, 2020, 46(8): 199-204.
[15] 王菲, 张玲, 杨佳怡, 叶子弘, 俞晓平. 基于实时荧光定量PCR检测的沙门氏菌标准物质验证[J]. 食品与发酵工业, 2020, 46(8): 219-225.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn