Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (6): 99-104    DOI: 10.13995/j.cnki.11-1802/ts.025306
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
青藏高原狭果茶藨子对蜡样芽孢杆菌的抑菌活性及作用机理
刘耀耀1, 刘哲1, 李珊1, 王金美1, 叶英1,2*, 曹效海1*
1(青海大学 农牧学院,青海 西宁,810016)
2(青海省青藏高原农产品加工重点实验室,青海 西宁,810016)
Antibacterial activities and mechanisms of Ribes stenocarpum Maxim in Qinghai-Tibet Plateau against Bacillus cereus
LIU Yaoyao1, LIU Zhe1, LI Shan1, WANG Jinmei1, YE Ying1,2*, CAO Xiaohai1*
1(College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China)
2(Qinghai Province Tibetan Plateau Laboratory of Agric-Product Processing, Xining 810016, China)
下载:  HTML   PDF (7881KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以青藏高原狭果茶藨子为原料,探究其对蜡样芽孢杆菌的抑菌作用及作用机制,利用纸片扩散法和二倍稀释法评价抑菌活性,通过测定膜蛋白荧光光谱、碱性磷酸酶、NaK-ATP酶、呼吸链脱氢酶活性等探究抑菌机制。结果表明,狭果茶藨子提取物对蜡样芽孢杆菌有明显的抑制作用,最低抑菌浓度和最低杀菌浓度分别为3.13和6.25 mg/mL;狭果茶藨子提取物诱导了蜡样芽孢杆菌核酸、蛋白质及碱性磷酸酶泄露,破坏了细胞壁膜的完整性,并且改变了细胞膜膜蛋白构象,NaK-ATP酶、Ca2+Mg2+-ATP酶和T-ATP 酶活性测定结果表明提取物激活了膜结合离子通道,改变细胞膜内外离子浓度以抵抗不利环境的影响;此外提取物抑制呼吸链脱氢酶活性,影响了呼吸作用和能量代谢,扫描电镜结果表明提取物导致蜡样芽孢杆菌细胞严重变形,表面有异常凸起和凹陷,说明狭果茶藨子可以有效抑制蜡样芽孢杆菌生长繁殖,具有成为天然食品保鲜剂的潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘耀耀
刘哲
李珊
王金美
叶英
曹效海
关键词:  茶藨子  蜡样芽孢杆菌  抑菌活性  抑菌机理    
Abstract: Taking Ribes stenocarpum Maxim as raw material, the antimicrobial activity and mechanism of R. stenocarpum against Bacillus cereus were investigated. The antibacterial activities were evaluated by agar diffusion assay and double dilution method, the inhibition mechanism was investigated by measuring the fluorescence spectra of membrane protein, the activity of alkaline phosphatase, Na+K+-ATPase, respiratory chain dehydrogenase etc. Results showed that R. stenocarpum had significant inhibitory effect on B. cereus, the minimum inhibitory concentration and minimum bactericidal concentration were 3.13 and 6.25 mg/mL respectively. The extract of R. stenocarpum induced the leakage of alkaline phosphatase, protein and nucleotides into the culture medium, indicating damage to the integrity of cell wall and membrane, also changed the conformation of membrane protein. The activities of Na+K+-ATPase, Ca2+Mg2+-ATPase and T-ATPase were increased, the membrane bound ion channels were activated, the ion concentration inside and outside the cell membrane was changed to resist the influence of adverse environment. The activity of respiratory chain dehydrogenase was inhibited by the extract, and respiration and energy metabolism were affected. The results of scanning electron microscope showed that the extract caused serious deformation of B. cereus cells, and the surface of the cells had abnormal bulge and depression, all of which indicated that R. stenocarpum could effectively inhibit the growth and reproduction of B. cereus, it has the potential to be a natural food preservative.
Key words:  Ribes    Bacillus cereus    antibacterial activity    antibacterial mechanism
收稿日期:  2020-08-07      修回日期:  2020-09-27           出版日期:  2021-03-25      发布日期:  2021-04-15      期的出版日期:  2021-03-25
基金资助: 青海省科技厅项目(2016-ZJ-938Q)
作者简介:  硕士研究生(叶英副教授和曹效海教授为共同讯通作者,E-mail:yeying08211983@163.com;842700421@qq.com)
引用本文:    
刘耀耀,刘哲,李珊,等. 青藏高原狭果茶藨子对蜡样芽孢杆菌的抑菌活性及作用机理[J]. 食品与发酵工业, 2021, 47(6): 99-104.
LIU Yaoyao,LIU Zhe,LI Shan,et al. Antibacterial activities and mechanisms of Ribes stenocarpum Maxim in Qinghai-Tibet Plateau against Bacillus cereus[J]. Food and Fermentation Industries, 2021, 47(6): 99-104.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025306  或          http://sf1970.cnif.cn/CN/Y2021/V47/I6/99
[1] LAURENCE D, NADINE B, MIRJANA A, et al.An emetic Bacillus cereus outbreak in a kindergarten:Detection and quantification of critical levels of cereulide toxin[J].Foodborne Pathog Dis, 2015, 12(1):84-87.
[2] TALAHMEH N, ABU-RUMEILEH S, AL-RAZEM F.Development of a selective and differential media for the isolation and enumeration of Bacillus cereus from food samples[J].J Appl Microbiol, 2020, 128(5):1 440-1 447.
[3] 陆玲娣. 中国茶藨子属的研究[J].植物分类学报, 1995,33(1):58-75.LU L T. A study on the genus Ribes L.in China[J].Acta Phytotaxonomica Sinica, 1995, 33(1):58-75.
[4] 王占林, 樊光辉, 贺永远.青海高原茶藨子属树种资源与育苗技术[J].北方园艺, 2012(19):43-45.WANG Z L, FAN G H, HE Y Y.Ribes species resources and afforestation technique in Qinghai Plateau[J].Northern Horticulture, 2012(19):43-45.
[5] 金志民, 柴军红, 何婷婷,等.正交设计优化东北茶藨子的活性成分提取工艺[J].中国林副特产, 2018(6):14-16.JIN Z M, CHAI J H, HE T T, et al.Optimization of extraction process for active ingredient from Ribes mandshuricum[J].Forest By-Product and Speciality in China, 2018(6):14-16.
[6] 叶英, 李宗仁, 曹效海,等.青藏高原狭果茶藨子果实提取物成分、抑菌活性及其抗疲劳活性[J].食品工业科技, 2019,40(13):7-13.YE Y, LI Z R, CAO X H, et al.Components and antibacterial activities of extracts from the fruits of Ribes stenocarpum Maxim in Qinghai-Tibet Plateau and their anti-fatigue activity[J].Science and Technology of Food Industry, 2019,40(13):7-13.
[7] 冯亚净, 张媛媛, 王瑞鑫,等.五味子木脂素对大肠杆菌的抑菌机理及效果[J].食品与发酵工业, 2016,42(2):72-76.FENG Y J, ZHANG Y Y, WANG R X, et al.Antibacterial effect of Lignanoid from Fructus Schisandrae chinensis on the Escherichia coli and its mechanism[J].Food and Fermentation Industries, 2016,42(2):72-76.
[8] KANG S M, KONG F H, SHI X Y, et al.Antibacterial activity and mechanism of lactobionic acid against Pseudomonas fluorescens and Methicillin-resistant Staphylococcus aureus and its application on whole milk[J].Food Control, 2020,108:106 876.
[9] CAI X T, WANG X, CHEN Y C, et al.A natural biopreservative:Antibacterial action and mechanisms of Chinese Litsea mollis hemsl.extract against Escherichia coli dh5α and Salmonella spp.[J].Journal of Dairy Science, 2019, 102(11):9 663-9 673.
[10] WANG L H, WANG M S, ZENG X, et al.Membrane and genomic DNA dual-targeting of citrus flavonoid naringenin against Staphylococcus aureus[J].Integrative Biology (Camb), 2017, 9(10):820-829.
[11] SONG M Z, WANG X R, MAO C Q, et al.The discovery of a potential antimicrobial agent:The novel compound natural medicinal plant fermentation extracts against Candida albicans[J].IOP Conference Series:Materials Science and Engineering, 2018, 301(1):012 026.
[12] LIU X, CAI J X, CHEN H M, et al.Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa[J].Microb Pathog, 2020, 141:103 980.
[13] WANG B Y, GAO X L, LIU B G, et al.Protective effects of curcumin against chronic alcohol-induced liver injury in mice through modulating mitochondrial dysfunction and inhibiting endoplasmic reticulum stress[J].Food & Nutrition Research, 2019,63:3 597.
[14] 郑志永, 姚善泾.比色法测定大肠杆菌呼吸链脱氢酶活性[J].浙江大学学报(工学版), 2005(3):119-122.ZHENG Z Y, YAO S J.Colorimetric assay for respiratory chain dehydrogenase activity in Escherichia coli[J].Journal of Zhejiang University(Engineering Science), 2005(3):119-122.
[15] LI Y Q, HAN Q, FENG J L, et al.Antibacterial characteristics and mechanisms of ε-poly-lysine against Escherichia coli and Staphylococcus aureus[J].Food Control, 2014, 43:22-27.
[16] 周云冬, 章漪玲, 宗红, 等.牡丹花蕾提取物对铜绿假单胞菌的抑菌活性及其机理[J].食品与发酵工业, 2019,45(13):92-97.ZHOU Y D, ZHANG Y L, ZONG H, et al.Antibacterial activities and mechanisms of Paeonia suffruticosa Andr.buds extract against Pseudomonas aeruginosa[J].Food and Fermentation Industries, 2019,45(13):92-97.
[17] CAO J R, FU H J, GAO L H, et al.Antibacterial activity and mechanism of lactobionic acid against Staphylococcus aureus[J].Folia Microbiol (Praha), 2019, 64(6):899-906.
[18] XIANG Q S, KANG C D, NIU L Y, et al.Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas Deceptionensis CM2[J].LWT, 2018, 96:395-401.
[19] 翟艺宗, 黄昌林, 常祺, 等.中频脉冲电流经皮刺激肝区对运动性疲劳大鼠肝细胞线粒体Na+-K+-ATP酶及Ca2+-Mg2+-ATP酶活性的影响[J].解放军医学杂志, 2015,40(4):327-330.ZHAI Y Z, HUANG C L, CHANG Q, et al.Effects of percutaneous midband pulse current stimulation in hepatic region on the activity of hepatic mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase in exercise-induced fatigued rats[J].Medical Journal of Chinese People's Liberation Army, 2015,40(4):327-330.
[20] LIN Y L, TANG X, XU L Z, et al.Antibacterial properties and possible action mechanism of chelating peptides-zinc nanocomposite against Escherichia coli[J].Food Control, 2019, 106:106 675.
[21] LI X C, HE C F, SONG L Y, et al.Antimicrobial activity and mechanism of Larch bark procyanidins against Staphylococcus aureus[J].Acta Biochim Biophys Sin (Shanghai), 2017, 49(12):1 058-1 066.
[22] 李志刚, 陈宝峰, 张中华, 等.辅助能量物质强化环磷酸腺苷发酵合成机制[J].中国生物工程杂志, 2020,40(Z1):102-108.LI Z G, CHEN B F, ZHANG Z H, et al.The physiological mechanism for enhanced cyclic adenosine monophosphate biosynthesis by auxiliary energy substance[J].China Biotechnology, 2020,40(Z1):102-108.
[1] 张骏梁, 张诗玲, 吴佳慧, 许姗姗, 梁锦有, 徐颖. 一株红树林来源稀有放线菌的鉴定和抑菌活性物质的初步研究[J]. 食品与发酵工业, 2021, 47(8): 101-107.
[2] 冯华峰, 韩瑨, 王晓花, 吴正钧. 牛类芽孢杆菌BD3526发酵麦麸抑制变形链球菌的特性[J]. 食品与发酵工业, 2021, 47(5): 17-21.
[3] 杨连战, 李言, 钱海峰, 张晖, 齐希光, 王立. 植物源天然防腐剂应用及抑菌机理研究现状[J]. 食品与发酵工业, 2021, 47(1): 303-308.
[4] 王祺, 张军, 乔晓妮, 何增国. 片球菌素的来源、生物合成、抑菌机理及其构效关系的研究进展[J]. 食品与发酵工业, 2020, 46(9): 278-284.
[5] 曾兰君, 包晓玮, 赵紫叶, 段丽娟, 邹楠. 刺山柑萃取物抑菌活性及稳定性[J]. 食品与发酵工业, 2020, 46(8): 131-135.
[6] 苏东民, 赵晓琳, 林江涛. 微波对小麦粉中蜡样芽孢杆菌的杀菌效果[J]. 食品与发酵工业, 2020, 46(4): 234-238.
[7] 张月, 崔旋旋, 刘英学, 盖永强, 朴美子. 茯砖茶中冠突散囊菌的分离鉴定及其发酵工艺和生物活性研究[J]. 食品与发酵工业, 2020, 46(22): 202-207.
[8] 王梓源, 李欣颖, 吕俊阁, 付萍, 孙雪文, 李雪晶, 谭之磊, 贾士儒. ε-聚赖氨酸对大肠杆菌的抑菌机制[J]. 食品与发酵工业, 2020, 46(21): 34-41.
[9] 张庆霞. 植物源防腐剂的抑菌机理及其在生鲜湿面保鲜中的应用[J]. 食品与发酵工业, 2020, 46(21): 310-316.
[10] 赵亚珠, 郝晓秀, 孟婕, 高翔. 牛至精油抑菌活性成分稳定性及其在抗菌纸箱中的缓释特性[J]. 食品与发酵工业, 2020, 46(20): 114-119.
[11] 陈全毅, 唐慧芳, 刘颖, 徐慧珊, 孙力军, 蚁硕钊. 海洋源抗菌活性乳酸菌的筛选及对冷鲜鸡肉货架期评价[J]. 食品与发酵工业, 2020, 46(20): 164-170.
[12] 张帅, 程昊, 邱彩霞, 陈贤如. 超声波诱变对猴头菇粗多糖的影响[J]. 食品与发酵工业, 2020, 46(2): 126-130.
[13] 肖怀秋, 李玉珍, 林亲录, 刘军, 姜明姣, 赵谋明. 花生肽亚铁胃肠仿生消化产物对金黄色葡萄球菌的抑菌机理[J]. 食品与发酵工业, 2020, 46(18): 111-116.
[14] 李晓娇, 杨丽华, 陈玉梅, 曹凯红, 何健民. 三种方法提取的清香木叶精油的抗氧化和抑菌活性研究[J]. 食品与发酵工业, 2020, 46(16): 93-98.
[15] 陈志娜, 薛咏振, 叶韬, 刘天, 沈业桥. 神仙豆中脂肽产生菌的筛选及脂肽特性分析[J]. 食品与发酵工业, 2020, 46(14): 48-53.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn