Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (6): 241-246    DOI: 10.13995/j.cnki.11-1802/ts.025381
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
荆州地区霉豆渣真菌多样性研究
刘梦琦, 朱媛媛, 倪慧, 王玉荣, 郭壮*
(湖北文理学院,湖北省食品配料工程技术研究中心,湖北 襄阳, 441053)
Fungal diversity in Meitauza collected from Jingzhou
LIU Mengqi, ZHU Yuanyuan, NI Hui, WANG Yurong, GUO Zhuang*
(Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang 441053, China)
下载:  HTML   PDF (5123KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高通量测序技术,对采集自湖北省荆州地区下辖的监利市和石首县的霉豆渣样品真菌多样性进行解析。结果发现,子囊菌门(Ascomycota)平均相对含量57.77%、担子菌门(Basidiomycota)33.54%和毛霉门(Mucoromycota)8.00%,为荆州地区霉豆渣中主要真菌门,且各菌门在2 个县市霉豆渣样品中含量差异不显著(P>0.05)。镰刀霉属(Fusarium)34.60%、丝孢酵母属(Trichosporon)28.96%、篮状菌属(Talaromyces)12.51%、放射毛霉属(Actinomucor)7.27%和枝孢属(Cladosporium)1.55%为主要真菌属,且镰刀霉属在2 个县市霉豆渣样品中含量差异极显著(P<0.01),其在监利市和石首县样品中的平均相对含量分别为56.74%和12.45%。10 个分类操作单元矩阵(operational taxonomic units,OTU)存在所有样品中,其中OTU1366和OTU963分别被鉴定为丝孢酵母属和镰刀霉属,平均相对含量分别为27.50%和29.08%。经聚类分析、主坐标分析和多元方差分析发现,采集自荆州地区下辖2个县市的霉豆渣样品真菌群落结构存在显著差异(P<0.05),且采集自石首县的霉豆渣真菌类群的组间差异性大于监利市(P<0.05);经LEfSe(linear discriminant analysis effect size)分析发现,导致2 个县市霉豆渣样品存在差异的类群为耐碱酵母属(Galactomyces),其在监利市和石首县样品中的相对含量分别为1.46%和0.62%。由此可见,虽然共有大量的核心类群,但荆州地区不同县市制作的霉豆渣其真菌群落结构存在显著的差异,而该差异主要由耐碱酵母属导致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘梦琦
朱媛媛
倪慧
王玉荣
郭壮
关键词:  霉豆渣  真菌多样性  高通量测序  荆州    
Abstract: High-throughput sequencing technology was used to analyze the fungal diversity of Meitauza samples collected from Jianli city and Shishou county in Jingzhou area, Hubei province. The results showed that Ascomycota (57.77%), Basidiomycota (33.54%) and Mucormycota (8.00%) were the dominant fungal phyla in the Meitauza from Jingzhou, and the abundance of each fungal phylum in the samples from Jianli and Shishou was not significantly different (P>0.05). Fusarium (34.60%), Trichosporon (12.51%), Talaromyces (12.51%), Actinomucor (7.27%) and Cladosporium (1.55%) were the dominant fungal genera, and the abundance of Fusarium between the two regions was significantly different (P>0.01), with the average relative abundance of 56.74% and 12.45%, respectively. Ten OTUs were found to exist in all samples, of which OTU1366 and OTU963 were identified as Trichosporon and Fusarium, with average relative abundance of 27.50% and 29.08%, respectively. Through cluster analysis, principal component analysis and multivariate analysis of variance, it was found that there were significant differences in fungal community structure between the samples from two regions(P<0.05), and the difference of fungal groups within Shishou was greater than that of Jianli (P<0.05). By LEfSe analysis, it was found that Galactomyces was the group that caused the difference between two regions and its relative abundance in the samples of Jianli and Shishou was 1.46% and 0.62%, respectively. Thus, although there are a large number of core groups, there are significant differences in fungal community structure of Meitauza produced in different counties and cities in Jingzhou area, and the difference is mainly caused by Galactomyces.
Key words:  Meitauza    fungal diversity    high throughput sequencing    Jingzhou
收稿日期:  2020-08-16      修回日期:  2020-09-23           出版日期:  2021-03-25      发布日期:  2021-04-15      期的出版日期:  2021-03-25
基金资助: 湖北文理学院教师科研能力培育基金项目(2017kypy051)
作者简介:  本科生(郭壮副教授为通讯作者,E-mail:guozhuang1984@163.com)
引用本文:    
刘梦琦,朱媛媛,倪慧,等. 荆州地区霉豆渣真菌多样性研究[J]. 食品与发酵工业, 2021, 47(6): 241-246.
LIU Mengqi,ZHU Yuanyuan,NI Hui,et al. Fungal diversity in Meitauza collected from Jingzhou[J]. Food and Fermentation Industries, 2021, 47(6): 241-246.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025381  或          http://sf1970.cnif.cn/CN/Y2021/V47/I6/241
[1] 夏秀东, 刘小莉, 王英, 等.豆渣固定化培养乳酸菌的条件优化及其对乳酸菌的保护作用[J].江西农业学报, 2017, 29(9):89-93.XIA X D, LIU X L, WANG Y, et al.Optimization of conditions for immobilized culture and protection of lactic acid bacteria on soybean dreg (okara)[J].Acta Agriculturae Jiangxi, 2017, 29(9):89-93.
[2] XIU D X, YING W, XIAO L L, et al.Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone 59 bioconversion, and cell survival under simulated gastric and intestinal conditions [J].PeerJ, 2016, 4:e2 701.
[3] 李伟伟, 曲俊雅, 周才琼.真菌及乳酸菌联合发酵对豆渣膳食纤维及理化特性的影响[J].食品与发酵工业, 2018, 44(11):159-166.LI W W, QU J Y, ZHOU C Q.Effects of combined fermentation of fungi and lactic acid bacteria on dietary fiber and physicochemical properties of soybean dregs[J].Food and Fermentation Industries, 2018, 44(11):159-166.
[4] 申春莉, 李曼, 沙见宇, 等.灵芝菌丝体固态发酵豆渣的营养成分变化[J].食品与发酵工业, 2019, 45(12):114-119.SHEN C L, LI M, SHA J Y, et al.Nutrient changes in solid-state fermented okara with Ganoderma lucidum[J].Food and Fermentation Industries, 2019, 45(12):114-119.
[5] 姚英政. 霉豆渣粑发酵过程中营养及风味成分变化研究[D].武汉:华中农业大学, 2010.YAO Y Z.Study on the changes in nutrition and flavor ingredients during soybean residue cakes fermentation[D].Wuhan:Huazhong Agricultural University, 2010.
[6] 张燕鹏, 杨瑞金, 王贺, 等.传统豆渣菌的菌相分析及蛋白酶和纤维素酶主要产生菌株的鉴定[J].食品工业科技, 2012, 33(1):171-174.ZHANG Y P,YANG R J,WANG H, et al.Analysis of the microflora and identification of the protease and cellulase producing strains from the traditional fermentative Douzhajun[J].Science and Technology of Food Industry, 2012, 33(1):171-174.
[7] 毛欣欣. 发酵豆渣微生物多样性与其营养成分变化关系研究[D].广州:华南农业大学, 2019.MAO X X.Study on the relationship between microbial diversity of fermented soybean dregs and its nutrient composition[D].Guangzhou:South China Agricultural University, 2019.
[8] 倪慧, 王玉荣, 尚雪娇, 等.龙山地区干豆豉真菌多样性研究[J].食品研究与开发, 2020, 41(4):27-31.NI H, WANG Y R, SHANG X J, et al.Study on fungal diversity of dried Douchi in Longshan[J].Food Research and Development, 2020, 41(4):27-31.
[9] SUN X D, LYU G Z, LUAN Y S, et al.Analyses of microbial community of naturally homemade soybean pastes in Liaoning Province of China by Illumina Miseq Sequencing[J].Food Research International, 2018, 111:50-57.
[10] YAN Y Z, QIAN Y L, JI F D, et al.Microbial composition during Chinese soy sauce koji-making based on culture dependent and independent methods[J].Food Microbiology, 2013, 34(1):189-195.
[11] XU D D, WANG P, ZHANG X, et al.High-throughput sequencing approach to characterize dynamic changes of the fungal and bacterial communities during the production of sufu, a traditional Chinese fermented soybean food[J].Food Microbiology, 2020, 86:103 340.
[12] 周书楠, 王玉荣, 周亚澳, 等.基于MiSeq高通测序技术的米酒真菌多样性分析[J].食品工业科技, 2019, 40(8):85-89;96.ZHOU S N, WANG Y R, ZHOU Y A, et al.Diversity analysis of fungal microflora in rice wine by MiSeq high throughput sequencing[J].Science and Technology of Food Industry, 2019, 40(8):85-89;96.
[13] 郭壮, 葛东颖, 尚雪娇, 等.退化和正常窖泥微生物多样性的比较分析[J].食品工业科技, 2018, 39(22):93-98;106.GUO Z, GE D Y, SHANG X J, et al.Comparative analysis on the diversity of bacterial microflora in degenerated and normal pit mud[J].Science and Technology of Food Industry, 2018, 39(22):93-98;106.
[14] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods, 2010, 7(5):335-336.
[15] CAPORASO J G, BITTINGER K, BUSHMAN F D, et al.PyNAST:A flexible tool for aligning sequences to a template alignment [J].Bioinformatics, 2010, 26(2):266-267.
[16] EDGAR R C.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics, 2010, 26(19):2 460-2 461.
[17] QUAST C, PRUESSE E, YILMAZ P, et al.The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools [J].Nucleic Acids Research, 2013, 41(1):590-596.
[18] WANG D M, MA H L, TAN M Q, et al.Next-generation sequencing confirmed the diagnosis of isolated central nervous system infection caused by Talaromyces marneffei in an immunocompetent patient[J].Chinese Medical Journal,2020,133(3):374-376.
[19] BOURASSA L, DOPPALAPUDI A, BUTLER-WU S M.Closing the brief case:Pneumonia caused by Talaromyces marneffei[J].Journal of Clinical Microbiology, 2019, 57(5):1 690-1 718.
[20] MOLINA A, CHAVARRÍA G, ALFARO-CASCANTE M, et al.Mycotoxins at the start of the food chain in Costa Rica:Analysis of six Fusarium toxins and ochratoxin a between 2013 and 2017 in animal feed and aflatoxin M1 in dairy products[J].Toxins, 2019, 11(6):312.
[21] 管瑛. 雅致放射毛霉DCY-1固态发酵豆渣的营养及功能性研究[D].南京:南京农业大学, 2016.GUAN Y.Effects on nutrition and bio-functionality of okara by solid-state fermentation with Actinomucor elegans DCY-1[D].Nanjing:Nanjing Agricultural University, 2016.
[22] 王强, 王玉荣, 陈江红, 等.龙山豆豉细菌多样性分析及其与当阳豆豉差异性比较[J].中国酿造, 2020, 39(1):26-30.WANG Q, WANG Y R, CHEN J H, et al.Bacterial diversity in Longshan Douchi and differences comparison with Dangyang Douchi[J].China Brewing, 2020, 39(1):26-30.
[23] 宁明, 赵馨馨, 董蕴, 等.基于Illumina MiSeq测序技术不同地区辣椒酱细菌多样性分析[J].中国调味品, 2020, 45(2):58-63.NING M, ZHAO X X, DONG Y, et al.Diversity of bacteria microflora in chili sauce of different area by Illumina MiSeq sequencing technology[J].China Condiment, 2020, 45(2):58-63.
[24] 张娟, 陈坚.中国传统发酵食品产业现状与研究进展[J].生物产业技术, 2015,9(4):11-16.ZHANG J, CHEN J.Current situation and research progress of Chinese traditional fermented food industry[J].Bioindustry Technology, 2015, 9(4):11-16.
[1] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[2] 李娜, 崔梦君, 马佳佳, 雷炎, 郭壮, 张振东. 基于Illumina MiSeq测序和传统可培养方法的洪湖鲊广椒乳酸菌多样性研究[J]. 食品与发酵工业, 2021, 47(4): 110-115.
[3] 尚雪娇, 方三胜, 朱媛媛, 赵慧君, 郭壮. 霉豆渣细菌多样性解析及基因功能预测[J]. 食品与发酵工业, 2021, 47(3): 36-42.
[4] 王俊奇, 黄卫红, 李双彤, 袁建军, 陈洪彬, 马应伦, 张秋芳. 永春老醋不同生产阶段细菌和真菌多样性动态变化特征分析[J]. 食品与发酵工业, 2021, 47(2): 38-44.
[5] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
[6] 吴晓红, 高生平, 蒋彩云, 王清政. 榨菜发酵过程中原核微生物群落结构及其理化因子的动态演替[J]. 食品与发酵工业, 2021, 47(1): 27-34.
[7] 王俊钢, 李宇辉, 刘成江, 郭安民, 岳建平. 新疆哈萨克族传统风干肉中真菌多样性分析[J]. 食品与发酵工业, 2021, 47(1): 35-42.
[8] 刘振东, 毕娜, 李哲, 李梁, 罗章, 薛蓓, 汪雯翰. 西藏不同产区曲拉细菌群落结构的比较分析[J]. 食品与发酵工业, 2020, 46(6): 60-66.
[9] 崔梦君, 张振东, 万舒曼, 葛东颖, 郭壮. 农家豆瓣酱细菌多样性及其对品质影响的评价[J]. 食品与发酵工业, 2020, 46(5): 68-73.
[10] 陈可丹, 吴晓江, 陈延儒, 刘婷, 万茵, 刘成梅, 吴酬飞, 付桂明. 顶温对特香型大曲理化指标及菌群演替的影响[J]. 食品与发酵工业, 2020, 46(5): 52-58.
[11] 马江, 文鹏程, 罗俏俏, 曹磊, 朱艳, 杨敏, 张卫兵, 张忠明. 甘南牦牛曲拉中真菌群落结构[J]. 食品与发酵工业, 2020, 46(4): 51-56.
[12] 崔梦君, 王玉荣, 葛东颖, 张振东, 刘欣, 郭壮. 遵义地区莽椒细菌多样性及PICRUSt基因功能预测分析[J]. 食品与发酵工业, 2020, 46(4): 106-112.
[13] 文开勇, 汪月, 文鹏程, 朱艳, 杨敏, 张忠明, 张卫兵. 四川传统腊肉中微生物群落结构研究[J]. 食品与发酵工业, 2020, 46(3): 36-42.
[14] 戈子龙, 张泽金, 周爱梅, 陈松, 钟青萍. 基于高通量测序与培养方法分析新鲜佛手与老香黄中的细菌多样性[J]. 食品与发酵工业, 2020, 46(3): 250-256.
[15] 李薇, 吴良如, 索化夷, 张甫生, 郑炯. 基于高通量测序方法研究腌制麻竹笋发酵过程中细菌群落的动态演替[J]. 食品与发酵工业, 2020, 46(24): 9-15.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn