Abstract: High-throughput sequencing technology was used to analyze the fungal diversity of Meitauza samples collected from Jianli city and Shishou county in Jingzhou area, Hubei province. The results showed that Ascomycota (57.77%), Basidiomycota (33.54%) and Mucormycota (8.00%) were the dominant fungal phyla in the Meitauza from Jingzhou, and the abundance of each fungal phylum in the samples from Jianli and Shishou was not significantly different (P>0.05). Fusarium (34.60%), Trichosporon (12.51%), Talaromyces (12.51%), Actinomucor (7.27%) and Cladosporium (1.55%) were the dominant fungal genera, and the abundance of Fusarium between the two regions was significantly different (P>0.01), with the average relative abundance of 56.74% and 12.45%, respectively. Ten OTUs were found to exist in all samples, of which OTU1366 and OTU963 were identified as Trichosporon and Fusarium, with average relative abundance of 27.50% and 29.08%, respectively. Through cluster analysis, principal component analysis and multivariate analysis of variance, it was found that there were significant differences in fungal community structure between the samples from two regions(P<0.05), and the difference of fungal groups within Shishou was greater than that of Jianli (P<0.05). By LEfSe analysis, it was found that Galactomyces was the group that caused the difference between two regions and its relative abundance in the samples of Jianli and Shishou was 1.46% and 0.62%, respectively. Thus, although there are a large number of core groups, there are significant differences in fungal community structure of Meitauza produced in different counties and cities in Jingzhou area, and the difference is mainly caused by Galactomyces.
夏秀东, 刘小莉, 王英, 等.豆渣固定化培养乳酸菌的条件优化及其对乳酸菌的保护作用[J].江西农业学报, 2017, 29(9):89-93.XIA X D, LIU X L, WANG Y, et al.Optimization of conditions for immobilized culture and protection of lactic acid bacteria on soybean dreg (okara)[J].Acta Agriculturae Jiangxi, 2017, 29(9):89-93.
[2]
XIU D X, YING W, XIAO L L, et al.Soymilk residue (okara) as a natural immobilization carrier for Lactobacillus plantarum cells enhances soymilk fermentation, glucosidic isoflavone 59 bioconversion, and cell survival under simulated gastric and intestinal conditions [J].PeerJ, 2016, 4:e2 701.
[3]
李伟伟, 曲俊雅, 周才琼.真菌及乳酸菌联合发酵对豆渣膳食纤维及理化特性的影响[J].食品与发酵工业, 2018, 44(11):159-166.LI W W, QU J Y, ZHOU C Q.Effects of combined fermentation of fungi and lactic acid bacteria on dietary fiber and physicochemical properties of soybean dregs[J].Food and Fermentation Industries, 2018, 44(11):159-166.
[4]
申春莉, 李曼, 沙见宇, 等.灵芝菌丝体固态发酵豆渣的营养成分变化[J].食品与发酵工业, 2019, 45(12):114-119.SHEN C L, LI M, SHA J Y, et al.Nutrient changes in solid-state fermented okara with Ganoderma lucidum[J].Food and Fermentation Industries, 2019, 45(12):114-119.
[5]
姚英政. 霉豆渣粑发酵过程中营养及风味成分变化研究[D].武汉:华中农业大学, 2010.YAO Y Z.Study on the changes in nutrition and flavor ingredients during soybean residue cakes fermentation[D].Wuhan:Huazhong Agricultural University, 2010.
[6]
张燕鹏, 杨瑞金, 王贺, 等.传统豆渣菌的菌相分析及蛋白酶和纤维素酶主要产生菌株的鉴定[J].食品工业科技, 2012, 33(1):171-174.ZHANG Y P,YANG R J,WANG H, et al.Analysis of the microflora and identification of the protease and cellulase producing strains from the traditional fermentative Douzhajun[J].Science and Technology of Food Industry, 2012, 33(1):171-174.
[7]
毛欣欣. 发酵豆渣微生物多样性与其营养成分变化关系研究[D].广州:华南农业大学, 2019.MAO X X.Study on the relationship between microbial diversity of fermented soybean dregs and its nutrient composition[D].Guangzhou:South China Agricultural University, 2019.
[8]
倪慧, 王玉荣, 尚雪娇, 等.龙山地区干豆豉真菌多样性研究[J].食品研究与开发, 2020, 41(4):27-31.NI H, WANG Y R, SHANG X J, et al.Study on fungal diversity of dried Douchi in Longshan[J].Food Research and Development, 2020, 41(4):27-31.
[9]
SUN X D, LYU G Z, LUAN Y S, et al.Analyses of microbial community of naturally homemade soybean pastes in Liaoning Province of China by Illumina Miseq Sequencing[J].Food Research International, 2018, 111:50-57.
[10]
YAN Y Z, QIAN Y L, JI F D, et al.Microbial composition during Chinese soy sauce koji-making based on culture dependent and independent methods[J].Food Microbiology, 2013, 34(1):189-195.
[11]
XU D D, WANG P, ZHANG X, et al.High-throughput sequencing approach to characterize dynamic changes of the fungal and bacterial communities during the production of sufu, a traditional Chinese fermented soybean food[J].Food Microbiology, 2020, 86:103 340.
[12]
周书楠, 王玉荣, 周亚澳, 等.基于MiSeq高通测序技术的米酒真菌多样性分析[J].食品工业科技, 2019, 40(8):85-89;96.ZHOU S N, WANG Y R, ZHOU Y A, et al.Diversity analysis of fungal microflora in rice wine by MiSeq high throughput sequencing[J].Science and Technology of Food Industry, 2019, 40(8):85-89;96.
[13]
郭壮, 葛东颖, 尚雪娇, 等.退化和正常窖泥微生物多样性的比较分析[J].食品工业科技, 2018, 39(22):93-98;106.GUO Z, GE D Y, SHANG X J, et al.Comparative analysis on the diversity of bacterial microflora in degenerated and normal pit mud[J].Science and Technology of Food Industry, 2018, 39(22):93-98;106.
[14]
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al.QIIME allows analysis of high-throughput community sequencing data[J].Nature Methods, 2010, 7(5):335-336.
[15]
CAPORASO J G, BITTINGER K, BUSHMAN F D, et al.PyNAST:A flexible tool for aligning sequences to a template alignment [J].Bioinformatics, 2010, 26(2):266-267.
[16]
EDGAR R C.Search and clustering orders of magnitude faster than BLAST[J].Bioinformatics, 2010, 26(19):2 460-2 461.
[17]
QUAST C, PRUESSE E, YILMAZ P, et al.The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools [J].Nucleic Acids Research, 2013, 41(1):590-596.
[18]
WANG D M, MA H L, TAN M Q, et al.Next-generation sequencing confirmed the diagnosis of isolated central nervous system infection caused by Talaromyces marneffei in an immunocompetent patient[J].Chinese Medical Journal,2020,133(3):374-376.
[19]
BOURASSA L, DOPPALAPUDI A, BUTLER-WU S M.Closing the brief case:Pneumonia caused by Talaromyces marneffei[J].Journal of Clinical Microbiology, 2019, 57(5):1 690-1 718.
[20]
MOLINA A, CHAVARRÍA G, ALFARO-CASCANTE M, et al.Mycotoxins at the start of the food chain in Costa Rica:Analysis of six Fusarium toxins and ochratoxin a between 2013 and 2017 in animal feed and aflatoxin M1 in dairy products[J].Toxins, 2019, 11(6):312.
[21]
管瑛. 雅致放射毛霉DCY-1固态发酵豆渣的营养及功能性研究[D].南京:南京农业大学, 2016.GUAN Y.Effects on nutrition and bio-functionality of okara by solid-state fermentation with Actinomucor elegans DCY-1[D].Nanjing:Nanjing Agricultural University, 2016.
[22]
王强, 王玉荣, 陈江红, 等.龙山豆豉细菌多样性分析及其与当阳豆豉差异性比较[J].中国酿造, 2020, 39(1):26-30.WANG Q, WANG Y R, CHEN J H, et al.Bacterial diversity in Longshan Douchi and differences comparison with Dangyang Douchi[J].China Brewing, 2020, 39(1):26-30.
[23]
宁明, 赵馨馨, 董蕴, 等.基于Illumina MiSeq测序技术不同地区辣椒酱细菌多样性分析[J].中国调味品, 2020, 45(2):58-63.NING M, ZHAO X X, DONG Y, et al.Diversity of bacteria microflora in chili sauce of different area by Illumina MiSeq sequencing technology[J].China Condiment, 2020, 45(2):58-63.
[24]
张娟, 陈坚.中国传统发酵食品产业现状与研究进展[J].生物产业技术, 2015,9(4):11-16.ZHANG J, CHEN J.Current situation and research progress of Chinese traditional fermented food industry[J].Bioindustry Technology, 2015, 9(4):11-16.