Please wait a minute...
食品与发酵工业  2021, Vol. 47 Issue (8): 54-61    DOI: 10.13995/j.cnki.11-1802/ts.025385
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
陈晓思1, 贺稚非1,2, 王泽富1, 李洪军1,2*
1(西南大学 食品科学学院,重庆,400716)
The effect of peroxyl radicals on the physicochemical properties and structure of rabbit meat myofibril protein
CHEN Xiaosi1, HE Zhifei1,2, WANG Zefu1, LI Hongjun1,2*
1(College of Food Science, Southwest University, Chongqing 400716, China)
2(Chongqing Engineering Research Center of Regional Food, Chongqing 400716, China)
下载:  HTML   PDF (5760KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探讨脂质氧化对蛋白质氧化的影响,用不同浓度2,2-偶氮二(2-甲基丙基咪)二盐酸盐[2,2'-azobis(2-amidinopropane) dihydrochloride,AAPH]热解产生的脂质初级代谢产物过氧自由基处理兔肉肌原纤维蛋白(myofibril protein,MP)。结果表明,随着AAPH浓度的增加,兔肉MP羰基含量、表面疏水性、亮度值和黄度值显著增加(P<0.05),而MP总巯基、游离氨、溶解度、内源性荧光强度和Zeta电位绝对值都呈显著降低趋势(P<0.05)。拉曼光谱结果显示,MP的α-螺旋含量下降,无规则卷曲含量上升,进一步证实蛋白质二级结构发生改变。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate-polyacrylamide gelelectrophoresis, SDS-PAGE)结果表明,AAPH会导致MP发生交联和聚集,形成分子质量较大的聚集物。因此,过氧自由基会通过促进兔肉肌原纤维蛋白氧化,影响MP的理化性质,研究可为通过调控脂质氧化来控制兔肉加工过程中的蛋白氧化提供一定的理论依据。
E-mail Alert
关键词:  过氧自由基  兔肉蛋白  蛋白氧化  结构  理化特性    
Abstract: In order to study the effect of lipid oxidation on protein oxidation, the primary lipid metabolite peroxyl radicals produced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was used to treat rabbit myofibrillar protein (MP). The results showed that with the increase of AAPH concentration, the carbonyl content, surface hydrophobicity, brightness and yellowness of rabbit meat MP increased significantly (P<0.05). However, the total sulfhydryl group, free ammonia, solubility, endogenous fluorescence intensity and the absolute value of Zeta potential of rabbit meat MP showed a significant decreasing trend (P<0.05). Moreover, the results of Raman spectroscopy showed that the α-helix content of MP decreased and the content of irregular coils increased, which further confirmed that the protein secondary structure had changed. Besides, sodium dodecyl sulfate-polyacrylamide gelelectrophoresis (SDS-PAGE)results showed that the pyrolysis products of AAPH could cause cross-linking and aggregation of MP, forming aggregates with larger molecular weight. As a result, peroxyl radicals can affect the physicochemical properties of MP by promoting the oxidation of rabbit meat myofibril protein, which provides a theoretical basis for controlling the oxidation of protein during the processing of rabbit meat by regulating lipid oxidation.
Key words:  peroxyl radicals    rabbit meat protein    protein oxidation    structure    physicochemical property
               出版日期:  2021-04-25      发布日期:  2021-05-20      期的出版日期:  2021-04-25
基金资助: 国家兔产业技术体系肉加工与综合利用(CARS-43-E-1);重庆市特色食品工程技术研究中心能力提升项目(cstc2014pt-gc8001)
作者简介:  硕士研究生(李洪军教授为通讯作者,
陈晓思,贺稚非,王泽富,等. 过氧自由基对兔肉肌原纤维蛋白理化性质及结构的影响[J]. 食品与发酵工业, 2021, 47(8): 54-61.
CHEN Xiaosi,HE Zhifei,WANG Zefu,et al. The effect of peroxyl radicals on the physicochemical properties and structure of rabbit meat myofibril protein[J]. Food and Fermentation Industries, 2021, 47(8): 54-61.
链接本文:  或
[1] ZOTTE A D, SZENDROE Z.The role of rabbit meat as functional food[J].Meat Science, 2011, 88(3):319-331.
[2] FAOSTAT.Livestock primary:The production quantity of rabbit meat and in China the world[EB/OL].[2020-09-30].
[3] WANG Z M, HE Z F, GAN X, et al.Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage[J].Meat Science, 2018, 146:131-139.
[4] LAN Y, SHANG Y B, SONG Y, et al.Changes in the quality of superchilled rabbit meat stored at different temperatures[J].Meat Science, 2016, 117:173-181.
[5] JIA N, WANG L T, SHAO J H, et al.Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification[J].Meat Science, 2017, 127:45-50.
[6] ZAREIAN M, TYBUSSEK T, SILCOCK P, et al.Interrelationship among myoglobin forms, lipid oxidation and protein carbonyls in minced pork packaged under modified atmosphere[J].Food Packaging and Shelf Life, 2019, 20:1-8.
[7] WONGWICHIAN C, KLOMKLAO S, PANPIPAT W, et al.Interrelationship between myoglobin and lipid oxidations in oxeye scad (Selar boops) muscle during iced storage[J].Food Chemistry, 2015, 174:279-285.
[8] SADEGHINEJAD N, SARTESHNIZI R A, GAVLIGHI H A, et al.Pistachio green hull extract as a natural antioxidant in beef patties:Effect on lipid and protein oxidation, color deterioration, and microbial stability during chilled storage[J].LWT-Food Science and Technology, 2019, 102:393-402.
[9] MARIOTTI M, LEINISCH F, LEEMING D J, et al.Mass-spectrometry-based identification of cross-links in proteins exposed to photo-oxidation and peroxyl radicals using O-18 labeling and optimized tandem mass spectrometry fragmentation[J].Journal of Proteome Research, 2018, 17(6):2 017-2 027.
[10] 李学鹏, 刘慈坤, 王金厢, 等.烷过氧自由基氧化对草鱼肌原纤维蛋白热聚集行为的影响[J].食品科学, 2020, 41(17):9-16.LI X P, LIU C K, WANG J X, et al.Effect of alkylperoxyl radical oxidation on heat-induced aggregation behavior of myofibrillar protein from grass carp (Ctenopharyngodon idellus)[J].Food Science, 2020, 41(17):9-16.
[11] 尤翔宇, 黄慧敏, 吴晓娟, 等.过氧自由基氧化对米糠蛋白结构和功能性质的影响[J].食品科学, 2019, 40(4):34-41.YOU X Y, HUANG H M, WU X J, et al.Effects of oxidative modification by peroxyl radicals on the structural and functional properties of rice bran protein[J].Food Science, 2019, 40(4):34-41.
[12] ZHOU F B, ZHAO M M, ZHAO H F, et al.Effects of oxidative modification on gel properties of isolated porcine myofibrillar protein by peroxyl radicals[J].Meat Science, 2014, 96(4):1 432-1 439.
[13] FUENTES-LEMUS E, SILVA E, BARRIAS P, et al.Aggregation of α- and β- caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as dityrosine and ditryptophan formation[J].Free Radical Biology and Medicine, 2018, 124:176-188.
[14] 邱天福. 烷过氧自由基氧化修饰对大豆蛋白结构和性质的影响[D].武汉:华中农业大学, 2013.QIU T F.Effects of alkylperoxyl radical oxidation-modification on structure and properties of soy protein[D].Wuhan:Huazhong Agricultural University, 2013.
[15] PARK D, XIONG Y L, ALDERTON A L.Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein[J].Food Chemistry, 2007, 101(3):1 239-1 246.
[16] CHEN Y T, XU A Q, YANG R, et al.Myofibrillar protein structure and gel properties of trichiurus haumela surimi subjected to high pressure or high pressure synergistic heat[J].Food and Bioprocess Technology, 2020, 13(4):589-598.
[17] GAN X, LI H, WANG Z, et al.Does protein oxidation affect proteolysis in low sodium Chinese traditional bacon processing[J].Meat Science, 2019, 150:14-22.
[18] LYU Y Q, CHEN L, WU H Z, et al.(-)-Epigallocatechin-3-gallate-mediated formation of myofibrillar protein emulsion gels under malondialdehyde-induced oxidative stress[J].Food Chemistry, 2019, 285:139-146.
[19] SHEN H, ZHAO M M, SUN W Z.Effect of pH on the interaction of porcine myofibrillar proteins with pyrazine compounds[J].Food Chemistry, 2019, 287:93-99.
[20] JIA N, ZHANG F X, LIU Q, et al.The beneficial effects of rutin on myofibrillar protein gel properties and related changes in protein conformation[J].Food Chemistry, 2019, 301:1-9.
[21] WANG Z F, HE Z F, ZHANG D, et al.Using oxidation kinetic models to predict the quality indices of rabbit meat under different storage temperatures[J].Meat Science, 2020, 162:1-8.
[22] WANG Z M, HE Z F, GAN X, et al.Effect of peroxyl radicals on the structure and gel properties of isolated rabbit meat myofibrillar proteins[J].International Journal of Food Science and Technology, 2018, 53(12):2 687-2 696.
[23] ZHOU X X,CHEN H, LYU F, et al.Physicochemical properties and microstructure of fish myofibrillar protein-lipid composite gels:Effects of fat type and concentration[J].Food Hydrocolloids, 2019, 90:433-442.
[24] NYAISABA B M, HATAB S, LIU X X, et al.Physicochemical changes of myofibrillar proteins of squid (Argentinus ilex) induced by hydroxyl radical generating system[J].Food Chemistry, 2019, 297:1-8.
[25] YANG J Y, XIONG Y L.Comparative time-course of lipid and myofibrillar protein oxidation in different biphasic systems under hydroxyl radical stress[J].Food Chemistry, 2018, 243:231-238.
[26] CHENG W Q, ZHENG X Y, YANG M.Hydrogen peroxide induced protein oxidation during storage and lyophilization process[J].Journal of Pharmaceutical Sciences, 2016, 105(6):1 837-1 842.
[27] ZHOU L Y, ZHANG Y, ZHAO C B, et al.Structural and functional properties of rice bran protein oxidized by peroxyl radicals[J].International Journal of Food Properties, 2017, 20(s2):1 456-1 467.
[28] SHEN H, HUANG M Q, ZHAO M M, et al.Interactions of selected ketone flavours with porcine myofibrillar proteins:The role of molecular structure of flavour compounds[J].Food Chemistry, 2019, 298:1-7.
[1] 蒋彤, 纪杭燕, 柏玉香. Lactobacillus reuteri 121 4,6-α-葡萄糖基转移酶GtfBdN改性薯类淀粉产物结构及理化特性研究[J]. 食品与发酵工业, 2021, 47(9): 42-48.
[2] 李晨晨, 李梦丽, 张涛. 人乳寡糖的研究进展[J]. 食品与发酵工业, 2021, 47(9): 284-292.
[3] 刘志芳, 赵前程, 刘志东, 段蕊, 林娜, 张俊杰. 贝类多糖研究进展[J]. 食品与发酵工业, 2021, 47(9): 299-306.
[4] 郑欧阳, 孙钦秀, 刘书成, 潘燕墨. 香辛料提取物复配对风干肠品质和生物胺的影响[J]. 食品与发酵工业, 2021, 47(8): 90-95.
[5] 刘昕, 张驰, 薛艾莲, 赵吉春, 曾凯芳, 明建. 超声-酶法提取的豆腐柴低酯果胶理化性质及结构表征[J]. 食品与发酵工业, 2021, 47(8): 108-115.
[6] 叶彤, 聂聪怡, 李林强. 羊乳巴氏杀菌条件的筛选[J]. 食品与发酵工业, 2021, 47(8): 152-157.
[7] 李红娟, 刘婷婷, 邹璇, 赵树静, 李丹, 李媛, 李洪波, 于景华. 乳清蛋白-黄油乳液凝胶对低脂酸奶理化特性及品质的影响[J]. 食品与发酵工业, 2021, 47(7): 71-77.
[8] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[9] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[10] 党慧杰, 郑远荣, 刘振民. 超高压处理对乳清分离蛋白结构及致敏蛋白含量的影响[J]. 食品与发酵工业, 2021, 47(6): 56-61.
[11] 张俊, 胡玲, 张三杉, 余梦玲, 雷激. 不同发芽阶段高粱粉理化及功能特性的变化[J]. 食品与发酵工业, 2021, 47(6): 68-74.
[12] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[13] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[14] 李萍, 普绍荣, 李凤英, 左方骏, 张欣, 赵飞, 刘建. 碾磨度对粳稻外观品质和食味理化特性的影响[J]. 食品与发酵工业, 2021, 47(4): 21-26.
[15] 杨波, 王珂, 杨光, 吴君波, 江容安. 黄原胶的干热改性及复配增稠应用[J]. 食品与发酵工业, 2021, 47(4): 116-122.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持