Screening, identification of bacterial cellulose producing bacteria and establishment of fermentation kinetics
YU Zhan1, ZHAO Fuquan1, XU Chenglong1, WANG Zhenzhen1, ZHANG Zexin1, SHA Ruyi1*, MAO Jianwei1,2*
1(Zhejiang University of Science & Technology,Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Product,Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing,School of Biological and Chemical Engineering, Hangzhou 310023,China) 2(Zhejiang Industry Polytechnic College, Shaoxing 312000, China)
Abstract: A bacterial cellulose(BC) producing strain C1 was screened from Kombucha and identified as Komagataeibacter xylinus, based on morphological characteristics and molecular biology. Then, the obtained strain C1 was used as the test bacterium to ferment BC, using glucose as carbon source. Kinetic models of bacterial growth, BC production, and substrate consumption were constructed, respectively, and the kinetic parameters of the model were determined. The results showed that the synthesis of BC belonged to the type of partial growth coupling, and the correlation coefficients R2 of the three models were 0.998, 0.958 9, and 0.962 3, respectively, indicating that the experimental values fit well with the model, and the established kinetic model can better predict the parameters in the fermentation process of Komagataeibacter xylinus. This study provides technical support for the precise fermentation of BC.
OSHIMA T, KONDO K, OHTO K, et al.Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions[J].Reactive and Functional Polymers, 2008, 68(1):376-383.
[2]
JIN L, ZENG Z P, SHREYAS K, et al.Biocompatible, free-standing film composed of bacterial cellulose Nanofibers-Graphene composite[J].ACS Applied Materials&Interfaces, 2016, 8(1):1 011-1 018.
[3]
SHEIKHI A, HAYASHI J, EICHENBAUM J, et al.Recent advances in nanoengineering cellulose for cargo delivery[J].Journal of Controlled Release, 2019, 294:53-76.
[4]
傅美娟, 邓健, 罗佳茜, 等.基于膜滤法处理的预发酵椰子水促进细菌纤维素合成机理[J].食品科学, 2019, 40(24):179-184.FU M J, DENG J, LUO J Q, et al.Elucidation of the mechanism by which the filtrate of naturally fermented coconut water promotes bacterial cellulose synthesis[J].Food Science, 2019, 40(24):179-184.
[5]
ALI M H, ALJADAANI S, KHAN J, et al.Isolation and molecular identification of two chitinase producing bacteria from marine shrimp shell wastes[J].Pakistan Journal of Biological Sciences, 2020, 23(2):139-149.
[6]
JAGANNATH A, RAJU P S, Bawa A S.Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze drying process of probiotic lactic acid bacteria[J].Lwt Food Science & Technology, 2010, 43(8):1 197-1 203.
[7]
薛璐, 杨谦, 李晓东.大豆乳清细菌纤维素在冰淇淋中的应用[J].食品与发酵工业, 2004,30(6):122-124.XUE L,YANG Q, LI X D.Application of soybean whey bacterial cellulose in ice cream[J].Food and Fermentation Industries, 2004,30(6):122-124.
[8]
SHI Z J, ZHANG Y, PHILLIPS G O, et al.Utilization of bacterial cellulose in food[J].Food Hydrocolloids, 2014, 35:539-545.
[9]
郑梅霞, 刘波, 朱育菁, 等.细菌纤维素的生物合成及在食品工业的应用[J].食品安全质量检测学报, 2019, 10(19):6 412-6 421.ZHEN M X, LIU B, ZHU Y J, et al.Bacterial cellulose biosynthesis and application on food industry[J].Food Safety and Quality Detection Technology, 2019, 10(19):6 412-6 421.
赵航, 陈沙, 张璇, 等.葡糖醋杆菌J2-1静态发酵生产细菌纤维素的培养基优化[J].中国酿造, 2020, 39(5):152-156.ZHAO H, CHEN S, ZHANG X, et al.Medium optimization of bacterial cellulose production by Gluconacetobacter J2-1 with static fermentation[J].China Brewing, 2020, 39(5):152-156.
[12]
尹园, 马佳歌, 倪春蕾, 等.居间驹形氏杆菌发酵大豆糖蜜生产细菌纤维素条件的优化[J].食品科学, 2017, 38(18):8-16.YI Y, MA J G, NI C L, et al.Optimization of bacterial cellulose production by fermented soybean molasses with komagataeibacter intermedius[J].Food Science, 2017, 38(18):8-16.
[13]
VILLAREAL S A, BEAUFORT S, BOUAJILA J, et al.Understanding kombucha tea fermentation:A Review[J].Journal of Food Science, 2018, 83(1-3):580-588.
[14]
NGUYEN N, NGUYEN P, NGUYEN H, et al.Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid[J].LWT-Food Sci Technol, 2015, 64(2):1 149-1 155.
[15]
张妍, 徐伟, 傅徐阳.红茶菌产细菌纤维素菌种分离与初步鉴定[J].食品工业, 2012, 33(10):123-125.ZHANG Y, XU W, FU X Y.Isolation and preliminary identification of bacterial cellulose producing strain from kombucha[J].Food Industry, 2012, 33(10):123-125.
[16]
王洁琛, 陈志周, 王颖, 等.红茶菌中醋酸菌和酵母菌的分离鉴定及其相互作用[J].中国酿造, 2020, 39(3):126-130.WANG J C, CHEN Z Z, WANG Y, et al.Isolation, identification and interaction of acetic acid bacteria and yeast in kombucha[J].China Brewing, 2020, 39(3):126-130.
[17]
李昊燃. 红茶菌中细菌纤维素产生菌的筛选鉴定及发酵条件优化[D].开封:河南大学, 2016.LI H R.Screening and identification of a strain producing bacterial cellulose from Kombucha and purification of fermentation process[D].Kaifeng:Henan University, 2016.
[18]
BUCHANAN R E, GIBBONS N E.Bergey's Manual of Systemaic Bacteriology[M].Beijing:Science Publishing House, 1984.
[19]
东秀珠, 蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001:409-412.DONG X Z, CAI M Y.Manual for Identification of Common Bacterial Systems[M].Beijing:Science Press, 2001:409-412.
[20]
李志霞, 聂继云, 闫震, 等.响应面法对3,5-二硝基水杨酸比色法测定水果中还原糖含量条件的优化[J].分析测试学报, 2016, 35(10):1 283-1 288.LI Z X, NIE J Y, YAN Z, et al.Optimization of 3,5-dinitrosalicylic acid colorimetry determination conditions of reducing sugar in fruits by response surface method[J].Journal of Instrumental Analysis | J Instr Anal, 2016, 35(10):1 283-1 288.
[21]
张沙沙. 细菌纤维素的发酵制备、表征及应用研究[D].杭州:浙江科技学院, 2019.ZHANG S S.Fermentation preparation, characterization and application of bacterial cellulose[D].Hangzhou:Zhejiang University of science and technology, 2019.
[22]
察可文, 王瑞明, 马霞, 等.木醋杆菌发酵动力学模型的建立[J].工程数学学报, 2003, 20(08):21-26.CHA K W, WANG R M, MA X, et al.Establishment of fermentation kinetics model of Acetobacter xylinum[J].Chinese Journal of Engineering Mathematics, 2003, 20(8):21-26.
[23]
邵伟, 乐超银, 熊泽, 等.醋酸杆菌合成细菌纤维素的发酵动力学研究[J].中国酿造, 2005(10):26-29.SHAO W, LE C Y, XIONG Z, et al.Study on fermentation kinetics for bacterial cellulose production by Acetobacter pasteurianus[J].China Brewing, 2005(10):26-29.
[24]
齐香君, 张雯, 韩戌珺, 等.细菌纤维素生产菌株的动力学研究[J].食品科学, 2005, 26(12):65-67.QI X J, ZHANG W, HAN W J, et al.Studies on fermentation kinetics of strains producing bacterial cellulose[J].Food Science, 2005, 26(12):65-67.
[25]
BRICKWEDDE A, VAN D B M, GEERTMAN J M A, et al.Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in Saccharomyces pastorianus lager brewing yeast[J].Frontiers in microbiology, 2017, 8:1 690.
[26]
HOMUNG M, LUDWIG M, GERRARD A M, et al.Optimizing the production of bacterial cellulose in surface culture:Evaluation of substrate mass transfer influences on the bioreaction (Part 1)[J].Engineering in Life Sciences, 2006, 6(6):537-545.
[27]
PERES C M, ALVES M, HEMAN D A, et al.Novel isolates of lactobacilli from fermented portuguese olive as potential probiotics[J].LWT-Food Science and Technology, 2014, 59(1):234-246.
[28]
李雪, 白新鹏, 曹君, 等.仙人掌果酒发酵动力学及其抗氧化性[J].食品科学, 2017, 38(4):87-92.LI X, BAI X P, CAO J, et al.Fermentation kinetics and antioxidant activity of cactus wine[J].Food Science, 2017, 38(4):87-92.
[29]
MONTOYA S, SANCHEZ ó J, LEVIN L.Production of lignocellulolytic enzymes from three white-rot fungi by solid-state fermentation and mathematical modeling[J].African Journal of Biotechnology, 2015, 14(15):1 304-1 317.
[30]
LUEDEKING R, PIRET E L.A kinetic study of the lactic acid fermentation.Batch process at controlled pH[J].Journal of Biochemical and Microbiological Technology and Engineering, 1959, 1(4):393-412.
[31]
KASHID M, GHOSALKOR A.Evaluation of fermentation kinetics of xylose to ethanol fermentation in the presence of acetic acid by Pichia stipitis:Modeling and experimental data comparison[J].Indian Journal of Chemical Technology (IJCT), 2018, 25(1):31-39.