Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (6): 92-98    DOI: 10.13995/j.cnki.11-1802/ts.025434
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建
余瞻1, 赵福权1, 徐成龙1, 王珍珍1, 张泽鑫1, 沙如意1*, 毛建卫1,2*
1(浙江科技学院 生物与化学工程学院,浙江省农产品化学与生物加工技术重点实验室,浙江省农业生物资源生化制造协同中心,浙江 杭州,310023)
2(浙江工业职业技术学院,浙江 绍兴,312000)
Screening, identification of bacterial cellulose producing bacteria and establishment of fermentation kinetics
YU Zhan1, ZHAO Fuquan1, XU Chenglong1, WANG Zhenzhen1, ZHANG Zexin1, SHA Ruyi1*, MAO Jianwei1,2*
1(Zhejiang University of Science & Technology,Zhejiang Provincial Key Lab for Chem&Bio Processing Technology of Farm Product,Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing,School of Biological and Chemical Engineering, Hangzhou 310023,China)
2(Zhejiang Industry Polytechnic College, Shaoxing 312000, China)
下载:  HTML   PDF (4625KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 从红茶菌中筛选获得细菌纤维素(bacterial cellulose,BC)产生菌株C1,结合形态学特征及分子生物学手段,将其鉴定为木糖驹形氏杆菌(Komagataeibacter xylinus)。随后以筛选所得菌株C1为试验菌,以葡萄糖为碳源,通过分批发酵制备BC,分别构建菌体生长、产物生成以及底物消耗的动力学模型,并确定模型的动力学参数。结果表明,细菌纤维素的合成属于部分生长偶联型,3种模型的相关系数R2分别为0.998、0.958 9和0.962 3,说明实验值与模型值拟合良好,建立的动力学模型能够较好的预测木糖驹形氏杆菌发酵产BC过程中各参数的变化。该研究可以为BC的精准发酵提供技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余瞻
赵福权
徐成龙
王珍珍
张泽鑫
沙如意
毛建卫
关键词:  红茶菌  筛选  发酵  细菌纤维素  动力学    
Abstract: A bacterial cellulose(BC) producing strain C1 was screened from Kombucha and identified as Komagataeibacter xylinus, based on morphological characteristics and molecular biology. Then, the obtained strain C1 was used as the test bacterium to ferment BC, using glucose as carbon source. Kinetic models of bacterial growth, BC production, and substrate consumption were constructed, respectively, and the kinetic parameters of the model were determined. The results showed that the synthesis of BC belonged to the type of partial growth coupling, and the correlation coefficients R2 of the three models were 0.998, 0.958 9, and 0.962 3, respectively, indicating that the experimental values fit well with the model, and the established kinetic model can better predict the parameters in the fermentation process of Komagataeibacter xylinus. This study provides technical support for the precise fermentation of BC.
Key words:  kombucha    screening    ferment    bacterial cellulose    kinetics
收稿日期:  2020-08-21      修回日期:  2020-09-17           出版日期:  2021-03-25      发布日期:  2021-04-15      期的出版日期:  2021-03-25
基金资助: 浙江省重点研发计划项目(2017C02009);中国博士后科学基金(2018M632475);金华市农业类重大项目(2018-2-001a);省属高校基本科研业务费专项资金项目(2019JL10)
作者简介:  硕士研究生(沙如意副教授和毛建卫教授为共同通讯作者,E-mail:kevinsha_0204@163.com;zjhzmjw@163.com)
引用本文:    
余瞻,赵福权,徐成龙,等. 红茶菌中细菌纤维素产生菌的筛选、鉴定及其发酵动力学模型构建[J]. 食品与发酵工业, 2021, 47(6): 92-98.
YU Zhan,ZHAO Fuquan,XU Chenglong,et al. Screening, identification of bacterial cellulose producing bacteria and establishment of fermentation kinetics[J]. Food and Fermentation Industries, 2021, 47(6): 92-98.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025434  或          http://sf1970.cnif.cn/CN/Y2021/V47/I6/92
[1] OSHIMA T, KONDO K, OHTO K, et al.Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions[J].Reactive and Functional Polymers, 2008, 68(1):376-383.
[2] JIN L, ZENG Z P, SHREYAS K, et al.Biocompatible, free-standing film composed of bacterial cellulose Nanofibers-Graphene composite[J].ACS Applied Materials&Interfaces, 2016, 8(1):1 011-1 018.
[3] SHEIKHI A, HAYASHI J, EICHENBAUM J, et al.Recent advances in nanoengineering cellulose for cargo delivery[J].Journal of Controlled Release, 2019, 294:53-76.
[4] 傅美娟, 邓健, 罗佳茜, 等.基于膜滤法处理的预发酵椰子水促进细菌纤维素合成机理[J].食品科学, 2019, 40(24):179-184.FU M J, DENG J, LUO J Q, et al.Elucidation of the mechanism by which the filtrate of naturally fermented coconut water promotes bacterial cellulose synthesis[J].Food Science, 2019, 40(24):179-184.
[5] ALI M H, ALJADAANI S, KHAN J, et al.Isolation and molecular identification of two chitinase producing bacteria from marine shrimp shell wastes[J].Pakistan Journal of Biological Sciences, 2020, 23(2):139-149.
[6] JAGANNATH A, RAJU P S, Bawa A S.Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze drying process of probiotic lactic acid bacteria[J].Lwt Food Science & Technology, 2010, 43(8):1 197-1 203.
[7] 薛璐, 杨谦, 李晓东.大豆乳清细菌纤维素在冰淇淋中的应用[J].食品与发酵工业, 2004,30(6):122-124.XUE L,YANG Q, LI X D.Application of soybean whey bacterial cellulose in ice cream[J].Food and Fermentation Industries, 2004,30(6):122-124.
[8] SHI Z J, ZHANG Y, PHILLIPS G O, et al.Utilization of bacterial cellulose in food[J].Food Hydrocolloids, 2014, 35:539-545.
[9] 郑梅霞, 刘波, 朱育菁, 等.细菌纤维素的生物合成及在食品工业的应用[J].食品安全质量检测学报, 2019, 10(19):6 412-6 421.ZHEN M X, LIU B, ZHU Y J, et al.Bacterial cellulose biosynthesis and application on food industry[J].Food Safety and Quality Detection Technology, 2019, 10(19):6 412-6 421.
[10] YEE F, RAZAK S.Surface modification of bacterial cellulose film[J].Mater Sci Forum, 2017, 889:71-74.
[11] 赵航, 陈沙, 张璇, 等.葡糖醋杆菌J2-1静态发酵生产细菌纤维素的培养基优化[J].中国酿造, 2020, 39(5):152-156.ZHAO H, CHEN S, ZHANG X, et al.Medium optimization of bacterial cellulose production by Gluconacetobacter J2-1 with static fermentation[J].China Brewing, 2020, 39(5):152-156.
[12] 尹园, 马佳歌, 倪春蕾, 等.居间驹形氏杆菌发酵大豆糖蜜生产细菌纤维素条件的优化[J].食品科学, 2017, 38(18):8-16.YI Y, MA J G, NI C L, et al.Optimization of bacterial cellulose production by fermented soybean molasses with komagataeibacter intermedius[J].Food Science, 2017, 38(18):8-16.
[13] VILLAREAL S A, BEAUFORT S, BOUAJILA J, et al.Understanding kombucha tea fermentation:A Review[J].Journal of Food Science, 2018, 83(1-3):580-588.
[14] NGUYEN N, NGUYEN P, NGUYEN H, et al.Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid[J].LWT-Food Sci Technol, 2015, 64(2):1 149-1 155.
[15] 张妍, 徐伟, 傅徐阳.红茶菌产细菌纤维素菌种分离与初步鉴定[J].食品工业, 2012, 33(10):123-125.ZHANG Y, XU W, FU X Y.Isolation and preliminary identification of bacterial cellulose producing strain from kombucha[J].Food Industry, 2012, 33(10):123-125.
[16] 王洁琛, 陈志周, 王颖, 等.红茶菌中醋酸菌和酵母菌的分离鉴定及其相互作用[J].中国酿造, 2020, 39(3):126-130.WANG J C, CHEN Z Z, WANG Y, et al.Isolation, identification and interaction of acetic acid bacteria and yeast in kombucha[J].China Brewing, 2020, 39(3):126-130.
[17] 李昊燃. 红茶菌中细菌纤维素产生菌的筛选鉴定及发酵条件优化[D].开封:河南大学, 2016.LI H R.Screening and identification of a strain producing bacterial cellulose from Kombucha and purification of fermentation process[D].Kaifeng:Henan University, 2016.
[18] BUCHANAN R E, GIBBONS N E.Bergey's Manual of Systemaic Bacteriology[M].Beijing:Science Publishing House, 1984.
[19] 东秀珠, 蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社, 2001:409-412.DONG X Z, CAI M Y.Manual for Identification of Common Bacterial Systems[M].Beijing:Science Press, 2001:409-412.
[20] 李志霞, 聂继云, 闫震, 等.响应面法对3,5-二硝基水杨酸比色法测定水果中还原糖含量条件的优化[J].分析测试学报, 2016, 35(10):1 283-1 288.LI Z X, NIE J Y, YAN Z, et al.Optimization of 3,5-dinitrosalicylic acid colorimetry determination conditions of reducing sugar in fruits by response surface method[J].Journal of Instrumental Analysis | J Instr Anal, 2016, 35(10):1 283-1 288.
[21] 张沙沙. 细菌纤维素的发酵制备、表征及应用研究[D].杭州:浙江科技学院, 2019.ZHANG S S.Fermentation preparation, characterization and application of bacterial cellulose[D].Hangzhou:Zhejiang University of science and technology, 2019.
[22] 察可文, 王瑞明, 马霞, 等.木醋杆菌发酵动力学模型的建立[J].工程数学学报, 2003, 20(08):21-26.CHA K W, WANG R M, MA X, et al.Establishment of fermentation kinetics model of Acetobacter xylinum[J].Chinese Journal of Engineering Mathematics, 2003, 20(8):21-26.
[23] 邵伟, 乐超银, 熊泽, 等.醋酸杆菌合成细菌纤维素的发酵动力学研究[J].中国酿造, 2005(10):26-29.SHAO W, LE C Y, XIONG Z, et al.Study on fermentation kinetics for bacterial cellulose production by Acetobacter pasteurianus[J].China Brewing, 2005(10):26-29.
[24] 齐香君, 张雯, 韩戌珺, 等.细菌纤维素生产菌株的动力学研究[J].食品科学, 2005, 26(12):65-67.QI X J, ZHANG W, HAN W J, et al.Studies on fermentation kinetics of strains producing bacterial cellulose[J].Food Science, 2005, 26(12):65-67.
[25] BRICKWEDDE A, VAN D B M, GEERTMAN J M A, et al.Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in Saccharomyces pastorianus lager brewing yeast[J].Frontiers in microbiology, 2017, 8:1 690.
[26] HOMUNG M, LUDWIG M, GERRARD A M, et al.Optimizing the production of bacterial cellulose in surface culture:Evaluation of substrate mass transfer influences on the bioreaction (Part 1)[J].Engineering in Life Sciences, 2006, 6(6):537-545.
[27] PERES C M, ALVES M, HEMAN D A, et al.Novel isolates of lactobacilli from fermented portuguese olive as potential probiotics[J].LWT-Food Science and Technology, 2014, 59(1):234-246.
[28] 李雪, 白新鹏, 曹君, 等.仙人掌果酒发酵动力学及其抗氧化性[J].食品科学, 2017, 38(4):87-92.LI X, BAI X P, CAO J, et al.Fermentation kinetics and antioxidant activity of cactus wine[J].Food Science, 2017, 38(4):87-92.
[29] MONTOYA S, SANCHEZ ó J, LEVIN L.Production of lignocellulolytic enzymes from three white-rot fungi by solid-state fermentation and mathematical modeling[J].African Journal of Biotechnology, 2015, 14(15):1 304-1 317.
[30] LUEDEKING R, PIRET E L.A kinetic study of the lactic acid fermentation.Batch process at controlled pH[J].Journal of Biochemical and Microbiological Technology and Engineering, 1959, 1(4):393-412.
[31] KASHID M, GHOSALKOR A.Evaluation of fermentation kinetics of xylose to ethanol fermentation in the presence of acetic acid by Pichia stipitis:Modeling and experimental data comparison[J].Indian Journal of Chemical Technology (IJCT), 2018, 25(1):31-39.
[1] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[2] 王迪, 王智荣, 陈湑慧, 宋军, 孔祥兵, 陈本开, 阚建全. 不同后发酵温度下曲霉型豆豉的氨基酸态氮生成动力学及品质变化研究[J]. 食品与发酵工业, 2021, 47(9): 91-99.
[3] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[4] 王伟佳, 刘爱国, 廖振宇, 刘立增, 孙丽婷, 杨红, 刘蕊, 刘长旭, 李雨轩. 发酵乳中内源性苯甲酸产生的影响因素[J]. 食品与发酵工业, 2021, 47(9): 168-173.
[5] 黄力, 刘功良, 费永涛, 高苏娟, 白卫东, 刘锐. 微生物航天育种及其在发酵食品微生物中的应用研究概述[J]. 食品与发酵工业, 2021, 47(9): 321-327.
[6] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[7] 赵帅东, 刘婷, 季旭, 杨梓璐, 尹轩威, 施文正, 汪立平, 宁喜斌. 利用外源蛋白酶和曲霉菌YL001加速沙丁鱼鱼露的发酵[J]. 食品与发酵工业, 2021, 47(8): 14-20.
[8] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[9] 叶彤, 聂聪怡, 李林强. 羊乳巴氏杀菌条件的筛选[J]. 食品与发酵工业, 2021, 47(8): 152-157.
[10] 李丽, 杨云丽, 杨小凡, 何伟, 袁恺, 朱威宇, 彭超, 何一凡, 董银卯, 周卫强. 液体发酵生产灵芝三萜酸的过程调控研究进展[J]. 食品与发酵工业, 2021, 47(8): 304-312.
[11] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[12] 张小朋, 陈贵才, 严发杰, 郭李坤, 曾伟主, 周景文. 高产那西肽活跃链霉菌的高通量选育[J]. 食品与发酵工业, 2021, 47(7): 8-13.
[13] 刘景阳, 刘云鹏, 徐庆阳. 谷氨酸全营养流加发酵新工艺[J]. 食品与发酵工业, 2021, 47(7): 14-20.
[14] 高宇豪, 吴勇杰, 朱亚鑫, 付静, 徐建国, 王松涛, 徐国强, 张晓梅, 史劲松, 许正宏. 产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J]. 食品与发酵工业, 2021, 47(7): 21-26.
[15] 邓祥宜, 李继伟, 何立超, 张原源, 黄国威, 鲍晓龙, 邱朝坤. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn