Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (9): 120-127    DOI: 10.13995/j.cnki.11-1802/ts.025658
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
超声波辅助酶解法提取北虫草菌素及其降血糖活性研究
符群1,2*, 郐滨1, 钟明旭1, 吴小杰1
1(东北林业大学 林学院,黑龙江 哈尔滨,150040)
2(黑龙江省森林食品资源利用重点实验室(东北林业大学),黑龙江 哈尔滨,150040)
Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity
FU Qun1,2*, KUAI Bin1, ZHONG Mingxu1, WU Xiaojie1
1(School of Forestry,Northeast Forestry University,Harbin 150040,China)
2(Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province,Northeast Forestry University,Harbin 150040,China)
下载:  HTML  PDF (4032KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用响应面法优化北虫草菌素的超声波辅助酶解法提取工艺条件,探究提取物的降血糖活性,为北虫草资源综合开发利用提供技术支持。并建立HepG2细胞胰岛素抵抗(insulin resistance,IR)模型,以葡萄糖消耗量为指标,研究虫草素降血糖活性的浓度影响及时间依赖性。结果表明:虫草素最佳提取工艺为pH值5.3,纤维素酶添加量1.60%(质量分数),酶解时间60 min,超声温度55 ℃,超声功率400 W,在此条件下虫草素得率为(8.097±0.028)mg/g;1.0 μmol/L胰岛素诱导HepG2细胞12 h为最佳胰岛素抵抗模型,24 h、0.25 g/L虫草素组的葡萄糖消耗量最高,为(4.554±0.008) mmol/L。研究结果表示采用超声波辅助酶解法可高效提取虫草素,提取物可改善HepG2细胞的胰岛素抵抗状态。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
符群
郐滨
钟明旭
吴小杰
关键词:  超声波辅助酶解  虫草素  葡萄糖消耗  胰岛素抵抗  降血糖    
Abstract: The response surface method was used to optimize the ultrasound-assisted enzymatic extraction process of Cordyceps militaris., and the resultant extract was tested for hypoglycemic activity, so as to provide technical support for the comprehensive development and utilization of C. militaris resources. The effects of pH, cellulase dosage, enzymolysis time and temperature of ultrasound-treatment on the yield of cordycepin were investigated through single factor experiments to determine the optimal extraction process. The insulin resistance(IR)model of HepG2 cells was established to study the effect of concentration and time-dependent of cordycepin on hypoglycemic activity. The results showed that the best extraction process for cordycepin was: cellulase dosage 1.60% (m/m), enzymolysis time 60 min, temperature of ultrasound-treatment 55 ℃, and ultrasonic power 400 W. Under this condition, the yield of cordycepin was (8.097±0.028) mg/g. The best insulin resistance model was induced by 1.0 μmol/L insulin for 12 h. The highest glucose consumption was (4.554±0.008) mmol/L in 24 h with 0.25 g/L cordycepin. In conclusion, the ultrasonic-assisted enzymatic hydrolysis method can efficiently extract cordycepin, and the extract can improve the insulin resistance of HepG2 cells.
Key words:  ultrasound assisted enzymolysis    cordycepin    glucose consumption    insulin resistance    hypoglycemia
收稿日期:  2020-09-14      修回日期:  2020-12-16           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: “十三五”国家重点研发计划项目(2016YFC0500307-07)
作者简介:  博士,高级工程师(通讯作者,E-mail:nefufuqun@163.com)
引用本文:    
符群,郐滨,钟明旭,等. 超声波辅助酶解法提取北虫草菌素及其降血糖活性研究[J]. 食品与发酵工业, 2021, 47(9): 120-127.
FU Qun,KUAI Bin,ZHONG Mingxu,et al. Extraction of cordycepin with ultrasound-assisted enzymatic hydrolysis and its hypoglycemic activity[J]. Food and Fermentation Industries, 2021, 47(9): 120-127.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025658  或          http://sf1970.cnif.cn/CN/Y2021/V47/I9/120
[1] 王奇. 蛹虫草功效成分研究进展[J].辽宁师专学报(自然科学版),2011,13(3):103-106.
WANG Q.Research progress on effective components of Cordyceps militaris[J].Journal of Liaoning Teachers College(Natural Science Edition),2011,13(3):103-106.
[2] 左锦辉, 贡晓燕,董银卯,等.蛹虫草的活性成分和药理作用及其应用研究进展[J].食品科学,2018,39(21):330-339.
ZUO J H,GONG X Y,DONG Y M,et al.Research achievements in bioactive coponents,Pharmacological effects and applications of Cordyceps militaris[J].Food Science,2018,39(21):330-339.
[3] 张薇薇, 龚韬,韩东河,等.人工虫草与冬虫夏草成分的比较研究[J].北京中医药,2016,35(1):87-91.
ZHANG W W,GONG T,HAN D H,et al.Comparative study on components of artificial cordyceps and Cordycep sinensiss[J].Beijing Journal of Traditional Chinese Medicine,2016,35(1):87-91.
[4] 王晓彤, 孙淑军,房军伟,等.简述蛹虫草与冬虫夏草异同[J].辽宁中医药大学学报,2014,16(4):165-169.
WANG X T,SUN S J,FANG J W,et al.Brief introduction of similarities and differences between Cordyceps militaris and Cordyceps sinensis[J].Journal of Liaoning University of Traditional Chinese Medicine,2014,16(4):165-169.
[5] 刘东泽, 陈伟,高新华,等.虫草菌素(3'-脱氧腺苷)研究进展[J].上海农业学报,2004,20(2):89-93.
LIU D Z,CHEN W,GAO X H,et al.Progress of research on cordycepin (3'-deoxyadenosine)[J].Actagriculture Shanghai,2004,20(2):89-93.
[6] 胡贤达, 岳颖,武鹏,等.虫草素药理作用研究及展望[J].中国生化药物杂志,2015,35(12):180-182;185.
HU X D,YUE Y,WU P,et al.Research and prospect of pharmacological action of cordycepin[J].Chinese Journal of Biochemical Pharmaceutics,2015,35(12):180-182;185.
[7] 蔡友华, 刘学铭.虫草素的研究与开发进展[J].中草药,2007,38(8):1 269-1 272.
CAI Y H,LIU X M.Advances in research and development of cordycepin[J].Chinese Herbal Medicine,2007,38(8):1 269-1 272.
[8] 张慧, 罗帷.蛹虫草中虫草素的研究与开发进展[J].现代农业科技,2016(9):292;298.
ZHANG H,LUO W.Research and development of cordycepin in Cordyceps militaris[J].Modern Agricultural Science and Technology,2016 (9):292-298.
[9] SOWERS J R,FROHLICH E D.Insulin and insulin resistance clinics:Impact on blood pressure and cardiovascular disease[J].The Medical of North America,2004,88(1):63-82.
[10] GUPTA D,VARMA S,KHANDELWAL R L.Long-term effects of tumor necrosis factor-αtreatment on insulin sigalling pathway in HepG2 cells and HepG2 cells overexpressing constitutively active AKT/PKB[J].Journal of Cellular Biochemistry,2007,100(3):593-607.
[11] 周啟林,孙永健.虫草素的分离纯化研究进展[J].食用菌,2020,42(4):9-12.
ZHOU Q L,SUN Y J.Research progress on isolution and purification of cordycepin[J].Edible Fungi,2020,42 (4):9-12.
[12] WANG H J,PAN M C,CHANG C K,et al.Optimization of ultrasonic-assisted extraction of cordycepin from Cordyceps militaris using orthogonal experimental design[J].Molecules 2014,19(12):20 808-20 820.
[13] 朱双杰, 董丽丽,潘见,等.超高压提取蛹虫草鲜汁中虫草素工艺优化[J].食品与机械,2016,32(4):187-191;200.
ZHU S J,DONG L L,PAN J,et al.Optimization of ultra-high pressure extraction of cordycepin from fresh Cordyceps militaris juice[J].Food and Machinery,2016,32(4):187-191;200.
[14] LUO Q Y,CAO H F,LIU S K,et al.Novel liquid fermentation medium of Cordyceps militaris and optimization of hydrothermal reflux extraction of cordycepin[J].Journal of Asina Natural Products Research,2020,22(2):167-178.
[15] 陆秀华,刘琳.微波辅助乙醇/硫酸铵双水相提取分离蛹虫草发酵产物中虫草素和虫草酸的研究[J].食用菌学报,2017,24(4):71-77.
LU X H,LIU L.Study on microwave-assisted ethanol/ammonium sulfate aqueous two-phase extraction and separation of cordycepin and cordycepic acid from Cordyceps militaris fermentation products[J].Acta Edible Fungi,2017,24(4):71-77.
[16] 余兴莲,王丽,徐伟民.纤维素酶降解纤维素机理的研究进展[J].宁波大学学报(理工版),2007(1):78-82.
YU X L,WANG L,XU W M.Research progress on cellulose degradation mechanism by cellulase[J].Journal of Ningbo University (Science and Technology Edition),2007 (1):78-82.
[17] 廖建庆.超声波天然物提取过程建模、频率优化及应用研究[D].无锡:江南大学,2017.
LIAO J Q.Modeling frequency optimization and application of ultrasonic extraction of natural products[D].Wuxi:Jiangnan University,2017.
[18] SUN Y Y,WANG W H.Ultrasonic extraction of ferulic acid from Ligusticum chuanxiong[J].Journal of the Chinese Institute of Chemical Engineers,2008,39(6):653-656.
[19] XIN C,DONG L F,RUI Q Z.Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide[J].International of Biological Macromolecules,2019,140:505-514.
[20] 张汝学, 贾正平,李茂星,等.体外胰岛素抵抗细胞模型的建立及在药物筛选中的应用[J].中国药理学报,2008(7):971-976.
ZHANG R X,JIA Z P,LI M X,et al.Establishment of cell model of insulin resistance in vitro and its application in drug screening[J].Chinese Pharmacological Bulletin,2008(7):971-976.
[21] 符群, 王梦丽,郐滨,等.鸡树条荚蒾果多酚改善胰岛素抵抗HepG2细胞的糖代谢效应[J].北京林业大学学报,2020,42(2):106-113.
FU Q,WANG M L,KUAI B,et al.Improvement of glucose metabolism in insulin resistant HepG2 cells by polyphenols from Viburnum gallinarum[J].Journal of Beijing Forestry University,2020,42 (2):106-113.
[22] 程玥, 毛竹君,张芯,等.黄芪多糖缓解HepG2细胞胰岛素抵抗模型的分子机制研究[J].预防医学,2020,32(2):121-124.
CHENG Y,MAO Z J,ZHANG X,et al.Study on the molecular mechanism of astragalus polysaccharides in alleviating insulin resistance model of HepG2 cells[J].Preventive Medicine,2020,32 (2):121-124.
[1] 孟洋, 卢红梅, 杨双全, 章之柱, 陈莉, 刘兵, 王利萍. 铁皮石斛复配花茶制作工艺及其功能性研究[J]. 食品与发酵工业, 2021, 47(8): 170-179.
[2] 周雯, 庄蕾, 吴森. 植物多糖在Ⅱ型糖尿病降血糖作用方面的研究进展[J]. 食品与发酵工业, 2021, 47(8): 290-296.
[3] 王路, 张蕾, 郑皎碧, 王琼熠, 范辉. 发酵制品调控糖脂代谢性疾病作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(7): 292-300.
[4] 刘韫滔, 黄伟民, 李诚, 刘爱平, 王体强, 唐婷婷. 木姜叶柯全发酵茶的活性成分及其降血糖活性研究[J]. 食品与发酵工业, 2020, 46(20): 53-60.
[5] 曾铁鑫, 姚志仁, 李豫, 朱开梅, 兰圆圆, 顾生玖. 巴戟天不同极性萃取相的抗氧化及降血糖活性[J]. 食品与发酵工业, 2020, 46(19): 192-196.
[6] 张世奇, 唐兰兰, 孙劲毅, 杨娟, 惠永海. 辣椒素降糖作用及其机制研究进展[J]. 食品与发酵工业, 2020, 46(13): 262-269.
[7] 田文慧, 杨永晶, 吴云, 陈薇. 树莓果肉多糖在1型糖尿病大鼠中的免疫调节和抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(12): 102-108.
[8] 曾桥, 韦承伯, 夏飞, 李祥. 响应面法优化超声波辅助提取杜仲叶茯砖茶绿原酸及其体外降血糖抗氧化活性[J]. 食品与发酵工业, 2018, 44(9): 204-211.
[9] 贾福怀,许璐云,王彩霞,袁媛,熊菲菲,雷蕾. 降糖类保健食品配方及功效成分研究现状与展望[J]. 食品与发酵工业, 2017, 43(10): 282-287.
[10] 刘桂君,周思静,林金星. 培养基质对蛹虫草中虫草酸及核苷类物质的影响[J]. 食品与发酵工业, 2015, 41(5): 94-.
[11] 杨小萍,岳思君,徐春燕,苏建宇. 虫草枸杞复合发酵工艺研究[J]. 食品与发酵工业, 2014, 40(10): 119-122.
[12] 罗巍,刘东波,吴郑武,夏志兰,谢红旗. 蛹虫草液态发酵过程中有效成分的动态积累变化[J]. 食品与发酵工业, 2011, 37(10): 96-99.
[13] 丁献荣,提高兰,杨琳,汪庆旗,蒋涛. 高效液相色谱法测定保健食品中虫草素、尿苷和腺苷含量[J]. 食品与发酵工业, 2010, 36(09): 143-147.
[14] 赵雪梅,毕研平,苏延友,王桂玲,费洪荣. 泰山虫草菌丝体与冬虫夏草有效成分的TLCS分析[J]. 食品与发酵工业, 2008, 34(3): 126-.
[15] 赵国华,曾凯红,阚健全,陈宗道. 羧甲基豆渣膳食纤维的制备及其性能研究[J]. 食品与发酵工业, 2003, 29(7): 88-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn