Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (8): 6-13    DOI: 10.13995/j.cnki.11-1802/ts.025804
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
青稞膳食纤维和多酚对肠道微生物的协同调节作用
鲁朝凤1, 黄佳琦2, 黄勇桦3, 杨士花4, 陈壁1, 杨明静1, 李永强1*
1(云南农业大学 食品科学技术学院, 云南 昆明, 650201)
2 (杭州汉库医学检验所有限公司, 浙江 杭州, 310000)
3(滇西应用技术大学 普洱茶学院, 云南 普洱, 665099)
4 (云南农业大学 外语学院, 云南 昆明, 650201)
Synergetic regulation of gut microbiota by dietary fiber and phenolic compounds in hulless barley
LU Chaofeng1, HUANG Jiaqi2, HUANG Yonghua3, YANG Shihua4, CHEN Bi1, YANG Mingjing1, LI Yongqiang1*
1(College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China)
2(Hangzhou Hanku Medical Laboratory Limited Company, Hangzhou 310000, China)
3(West Yunnan University of Applied Sciences College of Tea(Pu'er), Pu'er 665099, China)
4(College of Foreign Languages, Yunnan Agricultural University, Kunming 650201, China)
下载:  HTML   PDF (4669KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以青稞面粉(hulless barley flour,HBF)、不可溶膳食纤维-多酚复合物(insoluble dietary fiber-phenolic compounds,IDF-PC)和可溶性膳食纤维-多酚复合物(soluble dietary fiber-phenolic compounds,SDF-PC)为材料,以阿魏酸(ferulic acid,FA)为对照,采用酶解法制备IDF-PC和SDF-PC,Folin-Ciocalteu法测定多酚含量,利用体外结肠发酵,结合16S rRNA高通量测序,根据微生物的丰度和多样性分析青稞膳食纤维和多酚对肠道微生物协同调节作用,并利用高效液相色谱法进行短链脂肪酸分析。结果表明,HBF、IDF-PC和SDF-PC中含有丰富的膳食纤维和多酚。经体外结肠发酵后,3种样品能够提高肠道微生物的丰度和多样性,明显促进乳杆菌属(Lactobacillus)、艾克曼菌属(Akkermansia)瘤胃菌科UCG-005(Ruminococcaceae-UCG-005)和瘤胃菌科NK4A214-(Ruminococcaceae-NK4A214-group)的生长,调节作用优于FA。HBF、IDF-PC和SDF-PC经体外结肠发酵后,能够产生较多的短链脂肪酸,乙酸含量最高,分别为(0.29±0.21)、(0.15±0.05)和(0.14±0.10) mg/mL,说明青稞膳食纤维和多酚对肠道微生物有较好的协同调节作用,可为青稞促进机体健康和预防疾病提供科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁朝凤
黄佳琦
黄勇桦
杨士花
陈壁
杨明静
李永强
关键词:  青稞  膳食纤维  多酚  体外结肠发酵  肠道微生物  协同调节    
Abstract: In this study, hulless barley flour (HBF), insoluble dietary fiber-phenolic compounds (IDF-PC) and soluble dietary fiber-phenolic compounds (SDF-PC) were used as experimental materials to analyze the synergetic regulation of gut microbiota by dietary fiber and polyphenol, according to the abundance and diversity of microbes by in vitro colonic fermentation and 16S rRNA high-throughput sequencing. Ferulic acid (FA) was taken as the control. IDF-PC and SDF-PC were extracted and isolated by enzymatic hydrolytic methods. The total phenolic content was determined using Folin-Ciocalteu assay. Moreover, short-chain fatty acids were analyzed by high performance liquid chromatography. The results showed that HBF, IDF-PC and SDF-PC were rich in dietary fibers and phenolic compounds. After in vitro colonic fermentation, these three samples could improve the abundance and diversity of gut microbiota and promote the growth of bacterial groups, including Lactobacillus, Akkermansia, Ruminococcaceae-UCG-005, Ruminococcaceae-NK4A214-group, compared with FA. Fermentation of HBF, IDF-PC and SDF-PC resulted in an increase in SCFAs production and the peak contents in acetic acid, which were (0.29±0.21), (0.15±0.05) and (0.14±0.10) mg/mL, respectively. This study suggests that hulless barley dietary fibers and phenolic compounds have better synergistic regulation on gut microbiota, which can provide scientific basis for hulless barley health promotion and disease prevention.
Key words:  hulless barley    dietary fiber    phenolics    in vitro colonic fermentation    gut microbiota    synergetic regulation
               出版日期:  2021-04-25      发布日期:  2021-05-20      期的出版日期:  2021-04-25
基金资助: 国家自然科学基金(31560428;31360378)
作者简介:  鲁朝凤硕士研究生和黄佳琦硕士研究生为共同第一作者(李永强副教授为通讯作者,E-mail:liyongqiang7512@163.com)
引用本文:    
鲁朝凤,黄佳琦,黄勇桦,等. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
LU Chaofeng,HUANG Jiaqi,HUANG Yonghua,et al. Synergetic regulation of gut microbiota by dietary fiber and phenolic compounds in hulless barley[J]. Food and Fermentation Industries, 2021, 47(8): 6-13.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025804  或          http://sf1970.cnif.cn/CN/Y2021/V47/I8/6
[1] ZHAO L P, ZHANG F, DING X Y, et al.Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes[J].Science, 2018, 359(6 380):1 151-1 156.
[2] ANA E.QUIRÓS S, RAMÓN P, JESU'S F A, et al.Impact of Fruit Dietary Dibers and Polyphenols on Modulation of the Human Fut Microbiota:Chemistry and Human Health[M].2th ed.Hoboken:John Wiley & Sons Ltd, 2017.
[3] DUDA-CHODAK A, TARKO T, SATORA P, et al.Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota:A review[J].European Journal of Nutrition, 2015, 54(3):325-341.
[4] 杨华, 叶发银, 赵国华.膳食多酚与肠道微生物相互作用研究进展[J].食品科学, 2015, 36(3):223-227.YANG H, YE F Y, ZHAO G H.Advances in interaction between gut microflora and dietary polyphenols[J].Food Science, 2015, 36(3):223-227.
[5] SÁYAGO-AYERDI S G,ZAMORA-GASGA V M,VENEMA K.Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2)[J].Food Research International, 2019, 118:89-95.
[6] MARTENS E.Gut microbial degradation of complex carbohydrates in colonic health and disease[J].Environmental and Molecular Mutagenesis, 2015, 56:46-46.
[7] NIV Z, GILI Z, JOTHAM S, et al.Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features[J].Cell, 2018, 174(6):1 388-1 405.
[8] JOTHAM S, NIV Z, GILI Z, et al.Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT[J].Cell, 2018, 174(6):1 406-1 423.
[9] ABBEELE P V D,DUYSBURGH C,JIANG T A, et al.A combination of xylooligosaccharides and a polyphenol blend affect microbial composition and activity in the distal colon exerting immunomodulating properties on human cells[J].Journal of Functional Foods, 2018, 47:163-171.
[10] PAOLA V, AURORA N, VINCENZO F.Cereal dietary fibre:A natural functional ingredient to deliver phenolic compounds into the gut[J].Trends in Food Science & Technology, 2008, 19(9):451-463.
[11] WANG H Y, HONG T, LI N, et al.Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota[J].Biochem Biophys Res Commun, 2018, 498(1):146-151.
[12] DUEÑAS M,MUÑOZ-GONZÁLEZ I,CUEVA C, et al.A survey of modulation of gut microbiota by dietary polyphenols[J].BioMed Research International, 2015.DOI:10.11055/2015/850920.
[13] GONG L X, CAO W Y, GAO J, et al.Whole tibetan hull-less barley exhibit stronger effect on promoting growth of genus bifidobacterium than refined barley in vitro[J].Journal of Food Science, 2018, 83(4):1 116-1 124.
[14] LEE M H. Official methods of analysis of AOAC International (16th edn): Edited by Patricia A. Cunniff, AOAC International, 1995. \$359.00 (North America)/\$399.00 (elsewhere) (xxvi + 1899 pages) ISBN 0 935 584 54 4[J]. Trends in Food Science & Technology, 1995, 6(11):382.
[15] 李永强, 杨士花, 吴国星, 等.青稞膳食纤维-多酚复合物的制备方法:云南, CN104382020A[P].2015-03-04.LI Y Q, YANG S H, WU G X, et al.Preparation of Highland Barley Dietary Fiber-polyphenol Complex:Yunnan, CN104382020A[P].2015-03-04.
[16] LI Q, YANG S H, LI Y Q, et al.Comparative evaluation of soluble and insoluble-bound phenolics and antioxidant activity of two chinese mistletoes[J].Molecules, 2018, 23(2):359.
[17] ANOMA C, FEREIDOON S.Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation[J].Journal of Functional Foods, 2012, 4(1):226-237.
[18] 邹青飞, 杨士花, 李永强, 等.体外结肠发酵对青稞膳食纤维中酚类化合物的含量及抗氧化活性的影响[J].食品科学, 2020, 41(2):94-100.ZOU Q F, YANG S H, LI Y Q, et al.Effects of in vitro colonic fermentation on the content and antioxidant activity of phenolic compounds in dietary fiber of highland barley[J].Food Science, 2020, 41(2):94-100.
[19] AURA A M,HÄRKÖNEN H,FABRITIUS M, et al.Development of an in vitro enzymic digestion method for removal of starch and protein and assessment of its performance using rye and wheat breads[J].Journal of Cereal Science, 1999, 29(2):139-152.
[20] PARKAR S G,TROWER T M,STEVENSON D E.Fecal microbial metabolism of polyphenols and its effects on human gut microbiota[J].Anaerobe, 2013, 23:12-19.
[21] QUAST C, PRUESSE E, YILMAZ P, et al.The SILVA ribosomal RNA gene database project:Improved data processing and web-based tools[J].Nucleic Acids Res, 2013, 41:590-596.
[22] WANG Q, GARRITY G M, TIEDJE J M, et al.Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J].Appl Environ Microbiol, 2007, 73(16):5 261-5 267.
[23] SCHLOSS P D, GEVERS D, WESTCOTT S L.Reducing the effects of PCR amplification and sequencing artifacts on 16S RNA-based studies[J].Plos One, 2011, 6(12):e27 310.
[24] HUANG J C, CHEN L,XUE B, et al.Different flavonoids can shape unique gut microbiota profile in vitro[J].Journal of Food Ence, 2016, 81(9):2 273-2 279.
[25] LIU S, YU Q, HUANG H, et al.The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber in vivo and in vitro[J].Food & Function, 2020, 11(1):748-758.
[26] BISHEHSARI F,ENGEN P A,PREITE N Z, et al.Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis[J].Genes, 2018, 9(2):102.
[27] JIN G W, ASOU Y, ISHIYAMA K, et al.Proanthocyanidin-rich grape seed extract modulates intestinal microbiota in ovariectomized mice[J].Journal of Food Ence, 2018, 83(4):1 149-1 152.
[28] LEE H C, JENNER A M,LOW C S, et al.Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota[J].Research in Microbiology, 2006, 157(9):876-884.
[29] 陆佳,方秀才.乳杆菌属治疗肠易激综合征的机制[J].胃肠病学和肝病学杂志, 2017, 26(2):218-221.LU J, FANG X C.Mechanism of Lactobacillus in the treatment of irritable bowel syndrome[J].Chinese Journal of Gastroenterology and Hepatology, 2017, 26(2):218-221.
[30] CHENG Y X, WU T, CHU X Q, et al.Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode[J].LWT - Food Science and Technology, 2020, 125:109-118.
[31] SUN M M, WU W, LIU Z J, et al.Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J].Journal of Gastroenterology, 2017, 52(1):1-8.
[32] PETRA L, HARRY J.F.Formation of propionate and butyrate by the human colonic microbiota[J].Environmental Microbiology, 2017, 19(1):29-41.
[33] ZORRAQUN-PEÑA I,SÁNCHEZ-HERNÁNDEZ E, PURAN B, et al.Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota[J].Journal of the Ence of Food and Agriculture, 2020, 100(10):3 789-3 802.
[1] 郑子锋, 孙培冬. 龙眼核多酚对蛋白非酶糖基化的抑制及机制研究[J]. 食品与发酵工业, 2021, 47(9): 25-31.
[2] 任春霖, 董红丽, 王风芹, 宋安东. 低聚木糖生产技术及其对动物益生作用研究进展[J]. 食品与发酵工业, 2021, 47(9): 293-298.
[3] 唐富豪, 滕建文, 韦保耀, 黄丽, 夏宁, 覃超. 基于非靶向代谢组学评价传统发酵对客家酸芥菜酚类化合物组成的影响[J]. 食品与发酵工业, 2021, 47(8): 128-133.
[4] 赵昊, 宋晶晶, 于佳俊, 张晓蒙, 张凤杰, 李涛, 武运, 薛洁. 不同产区葡萄酒多酚物质抗氧化活性差异及相关性分析[J]. 食品与发酵工业, 2021, 47(6): 84-91.
[5] 张龑, 龚号迪, 陈志成. 脱皮率对青稞粉的品质及面团特性的影响[J]. 食品与发酵工业, 2021, 47(5): 133-137.
[6] 葛茵, 向沙沙, 张亚林, 郑谊青, 李勉, 朱炫. 木糖醇益生功能研究进展[J]. 食品与发酵工业, 2021, 47(5): 267-272.
[7] 王文成, 胡银凤, 饶建平, 谢建华. 微波真空干燥速溶绿茶工艺优化[J]. 食品与发酵工业, 2021, 47(4): 202-207.
[8] 周亨乐, 王富海, 易俊洁, 程冯云, 袁蕾, 牛慧慧, 周林燕. 化学抑制剂对果蔬食品多酚氧化酶性质影响的研究进展[J]. 食品与发酵工业, 2021, 47(4): 253-260.
[9] 李琦, 曾凡坤, 华蓉, 王继飞. 响应面法优化超声辅助提取韭菜根不溶性膳食纤维[J]. 食品与发酵工业, 2021, 47(3): 128-134.
[10] 黄昊, 哈祖德, 顾京赛, 杨兴华, 王兆基, 陈双, 徐岩. 西藏传统青稞酒酿造用藏曲中主要酵母菌的分离及酿造特性研究[J]. 食品与发酵工业, 2021, 47(2): 8-14.
[11] 陈致印, 刘伟鹏, 王盈希, 曾立, 向国红, 刘桃李, 龚意辉. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
[12] 武芸, 王春林, 王丽朋, 张腊腊, 胡浩斌. 黑果枸杞多酚吸附分离特性及抗氧化性研究[J]. 食品与发酵工业, 2021, 47(2): 70-77.
[13] 苗英杰, 呼高伟, 付永前. 茶多酚热超声联合处理对冬瓜沙门氏菌数量的影响及其自适应神经网络生长模型的构建[J]. 食品与发酵工业, 2020, 46(9): 101-107.
[14] 李超, 李保国, 朱传辉, 孟祥. 茶多酚磁性微胶囊的制备条件优化和性能分析[J]. 食品与发酵工业, 2020, 46(9): 128-134.
[15] 朱秀灵, 叶精勤, 盛伊健, 孔雯瑾, 陈廷然, 傅锡鹏, 戴清源. 体外模拟消化对苹果多酚及其抗氧化活性的影响[J]. 食品与发酵工业, 2020, 46(8): 63-71.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn