Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (8): 27-33    DOI: 10.13995/j.cnki.11-1802/ts.025820
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
玉米油加热过程中挥发性物质形成机制
程琨雅1,2, 杜冰3, 付月4, 宝宇翔1,2, 肖琳1,2, 王缤晨1,2, 耿宇凤1,2, 董亮1,2*
1(大连工业大学 食品学院,辽宁 大连,116034)
2(国家海洋食品工程技术研究中心,辽宁 大连,116034)
3(大连工业大学 纺织与材料工程学院,辽宁 大连,116034)
4 (沈阳市化工学校,辽宁 沈阳,110122)
Forming mechanism of volatile compounds of corn oil during heating
CHENG Kunya1,2, DU Bing3, FU Yue4, BAO Yuxiang1,2, XIAO Lin1,2, WANG Binchen1,2, GENG Yufeng1,2, DONG Liang1,2*
1(Dalian Polytechnic University,School of Food Science and Technology, Dalian 116034,China)
2(National Engineering Research Center of Seafood, Dalian 116034,China)
3(Dalian Polytechnic University,School of Textile and Material Egineering, Dalian 116034,China)
4(Shenyang Chemical School, Shenyang 110122,China)
下载:  HTML   PDF (4137KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用真空辅助顶空固相微萃取-气相色谱-质谱联用技术对玉米油在加热过程中挥发性物质组成进行分析,以揭示玉米油加热过程中风味形成机制,此过程中检测并鉴定了52种挥发性化合物,其中包括醛(21种)、酮(8种)、醇(9种)、呋喃(3种)、酸和酯(共8种)和芳香族的化合物(3种)。同时,确定了各组分的形成温度。结果表明,温度对挥发性化合物的形成和含量有较大的影响,在30~100 ℃的低温范围内,玉米油的风味成分主要由C6~C10挥发性醛类和醇类组成;温度超过100 ℃,特别是在150 ℃时,形成了许多长碳链的醛类和醇类、呋喃类、酸类、酯类,从120 ℃到150 ℃,大多数挥发性化合物的含量在加热过程中都较大幅度增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程琨雅
杜冰
付月
宝宇翔
肖琳
王缤晨
耿宇凤
董亮
关键词:  气质联用  挥发性化合物  热加工  玉米油    
Abstract: The volatile components of corn oil during heating were analyzed by vacuum-assisted headspace solid-phase microextraction gas chromatography-mass spectrometry to reveal the mechanism of flavor formation in the process of heating. Fifty two volatile compounds including aldehydes (21), ketones (8), alcohols (9), furans (3), acids and esters (8) and aromatic compounds (3) were identified. At the same time, the temperature for the component formation was also been determined. The results showed that temperature had a great influence on the formation and content of volatile compounds. In the low-temperature ranging from 30 to 100 ℃, the flavor components of corn oil were mainly C6-C10 volatile aldehydes and alcohols. However, when the temperature was over 100 ℃, especially at 150 ℃, many long-chain aldehydes and alcohols, furans, acids and esters were formed. The content of most volatile compounds increased greatly during heating, especially from 120 ℃ to 150 ℃.
Key words:  gas-chromatography/mass spectrometry    volatile compounds    hot processing    corn oil
               出版日期:  2021-04-25      发布日期:  2021-05-20      期的出版日期:  2021-04-25
基金资助: 国家自然科学基金面上项目(31871760);国家十三五重点研发计划项目(2017YFD0401203);大连市高层次人才创新计划(2017RQ131)
作者简介:  硕士研究生(董亮副教授为通讯作者,E-mail:dongliang@dlpu.edu.cn)
引用本文:    
程琨雅,杜冰,付月,等. 玉米油加热过程中挥发性物质形成机制[J]. 食品与发酵工业, 2021, 47(8): 27-33.
CHENG Kunya,DU Bing,FU Yue,et al. Forming mechanism of volatile compounds of corn oil during heating[J]. Food and Fermentation Industries, 2021, 47(8): 27-33.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025820  或          http://sf1970.cnif.cn/CN/Y2021/V47/I8/27
[1] PERES F, JELEN H H, MAJCHER M M, et al.Characterization of aroma compounds in Portuguese extra virgin olive oils from Galega Vulgar and CobranÇosa cultivars using GC-O and GC×GC–ToFMS[J].Food Research International, 2013, 54(2):1 979-1 986.
[2] 宋晓寒, 王会.玉米油的营养功能及提取工艺[J].食品安全导刊, 2018(21):135-136.SONG X L, WANG H.The nutritional function and extraction process of corn oil[J].China Food Safty Magezine, 2018(21):135-136.
[3] BIANCHI F, CARERI M, MANGIA A, et al.Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography:Database creation and evaluation of precision and robustness[J].Journal of Separation Science, 2015, 30(4):563-572.
[4] LI Q, TANG X, LU S, et al.Composition and tocopherol, fatty acid, and phytosterol contents in micro-endosperm ultra-high oil corn[J].Grasas Y Aceites, 2019, 70(3):311.
[5] FUJISAKI M, ENDO Y, FUJIMOTO K.Retardation of volatile aldehyde formation in the exhaust of frying oil by heating under low oxygen atmospheres[J].Journal of the American Oil Chemists Society, 2002, 79(9):909-914.
[6] ZHANG W, LI N, FENG Y, et al.A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry[J].Food Chemistry, 2015, 185(15):326-332.
[7] PETER M F, NIKOLAUS B.Genotoxicity of lipid oxidation compounds[J].Free Radical Biology and Medicine, 2017(111):244-252.
[8] FULLANA, A, CARBONELL A A, SIDHU S.Volatile aldehyde emissions from heated cooking oils[J].Journal of the Science of Food and Agriculture, 2004, 84(15):2 015-2 021.
[9] KATRAGADDA H R, FULLANA A, SIDHU S, et al.Emissions of volatile aldehydes from heated cooking oils[J].Food Chemistry, 2010, 120(1):59-65.
[10] ZHU X, WANG K, ZHU J, et al.Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography-mass spectrometry[J].Journal of Agricultural and Food Chemistry, 2001, 49 (10):4 790-4 794.
[11] CHAI D, LI C W, ZHANG X X, et al.Analysis of volatile compounds from wheat flour in the heating process[J].International Journal of Food Engineering, 2019, 15(10):1-13.
[12] XIAO L, LI C W, CHAI D, et al.Volatile compound profiling from soybean oil in the heating process[J].Food Science & Nutrition, 2020, 8(2):1 139-1 149.
[13] XIAO W, JIANG H S.Principle of MS/MS and Application of GC/MS/MS to environmental analysis[J].Environmental Science and Technology, 2004.
[14] 徐星. 植物油氧化过程中脂肪酸和挥发性成分变化的研究[D].杭州:浙江工商大学, 2012.XU X.Study on changes of fatty acids and volatile components in the process of vegetable oil oxidation[D].Hangzhou:Zhejiang Gongshang University, 2012.
[15] PIERLUIGI D, YURAWECZ M P, MOSSOBA M M, et al.Improved identification of conjugated linoleic acid isomers using silver-ion HPLC separations[J].Journal of AOAC International, 2004,87(2):563-568.
[16] JABEUR H, ZRIBI A, MAKNI J, et al.Detection of chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC[J].Journal of Agricultural and Food Chemistry, 2014, 62(21):4 893-4 904.
[17] KAROUI I J, MSAADA K, ABDERRABBA M, et al.Bioactive compounds and antioxidant activities of thyme-enriched refined corn oil[J].Journal of Agricultural Science and Technology, 2016, 18(1):79-91.
[18] GOICOECHEA E, GUILLEN M D.Volatile compounds generated in corn oil stored at room temperature.Presence of toxic compounds[J].European Journal of Lipid Science and Technology, 2014, 116(4):395-406.
[19] SAGUY I S, DANA D.Integrated approach to deep fat frying:Engineering, nutrition, health and consumer aspects[J].Journal of Food Engineering, 2003, 56(2-3):143-152.
[20] 聂雪梅, 刘仲明, 张水华, 等.电子鼻及其在食品领域的应用[J].传感器技术, 2004, 23(10):1-3.NIE X M, LIU Z M, ZHANG S H,et al.Electronic nose and its application in food field[J].Transducer and Microsystem Technologies, 2004, 23(10):1 - 3.
[21] LIZHI H, TOYODA K, IHARA I.Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy[J].Journal of Food Engineering, 2010, 96(2):167-171.
[22] LORENZO, JOSE M, Influence of the type of fiber coating and extraction time on foal dry-cured loin volatile compounds extracted by solid-phase microextraction (SPME)[J].Meat Science, 2014, 96(1):179-186.
[23] DAVID M C, ANTHONY J H M M, WING C T,et al.A characterization of the Raman modes in a J-aggregate-forming dye:A comparison between theory and experiment[J].The Journal of Physical Chemistry, 2010, 114(44):11 920-11 927.
[24] GOPINATH A, PUHAN S, NAGARAJAN G.Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition[J].Renewable Energy, 2009, 34(7):1 806-1 811.
[25] ANONYMOUS. Toxicology and carcinogenesis studies of Furan (CAS No.110-00-9) in F344 rats and B6C3F1 mice(Gavage Studies)[J]. National Toxicology Program Technical Report Series, 1993, 402: 1-286.
[26] JUAN P HERNÁNDEZ-URIBE, GONZALO RAMOS-LÓPEZ, YEE-MADEIRA H, et al.Physicochemical, rheological and structural characteristics of starch in maize tortillas[J].Plant Foods for Human Nutrition, 2010, 65(2):152-157.
[27] HENRY S LAIN, ANDREW PROCTOR. Lipid hydrolysis and oxidation on the surface of milled rice[J].Journal of the American Oil Chemists Society, 2003, 80(6):563-567.
[28] ZHANG Q, QIN W, LI M, et al.Application of chromatographic techniques in the detection and identification of constituents formed during food frying:A review[J].Comprehensive Reviews in Food Science and Food Safety, 2015, 14(5):601-633.
[29] PORTER N A, CALDWELL S E, MILLS K A.Mechanisms of free radical oxidation of unsaturated lipids[J].Lipids, 1995, 30(4):277-290.
[1] 贾雪颖, 黄明泉, 张雨萌, 张璟琳, 孙宝国. 食用油与氯化钠模型反应中氯丙醇酯的消长规律[J]. 食品与发酵工业, 2021, 47(7): 86-93.
[2] 金刚, 张雪, 谷晓博, 王辉, 白雪菲, 张众, 盖昱梓, 马雯. 贺兰山东麓不同子产区赤霞珠葡萄自然发酵对葡萄酒香气的影响[J]. 食品与发酵工业, 2021, 47(7): 153-160.
[3] 张迪, 吉宏武, 陈浩, 刘书成, 毛伟杰. 脂质对凡纳滨对虾热风干制品香气特性的影响[J]. 食品与发酵工业, 2021, 47(7): 189-196.
[4] 岳翠男, 秦丹丹, 蔡海兰, 李琛, 王治会, 李文金, 杨普香, 吴华玲. QDA和GC-MS结合PLSR分析宁红茶中的风味物质[J]. 食品与发酵工业, 2021, 47(7): 225-231.
[5] 张彦聪, 李昀哲, 张军, 唐磊. 柠檬椰汁复合果酒的工艺研究及香气特征分析[J]. 食品与发酵工业, 2021, 47(4): 173-181.
[6] 王娇, 李玉新, 赵保堂, 何兴芬, 张俊, 张兆云, 杨富民. 优化顶空固相微萃取/气相色谱-质谱联用方法测定蜂王浆挥发性化合物[J]. 食品与发酵工业, 2020, 46(8): 239-245.
[7] 孙灵霞, 李苗云, 靳春杰, 朱永乐, 柳艳霞, 刘欢欢, 赵改名. 基于电子鼻和气质联用技术分析不同品牌道口烧鸡的香气差异性[J]. 食品与发酵工业, 2020, 46(6): 238-243.
[8] 汪蓓, 舒娜, 陆安霞, 廖雪利, 闫敬娜, 谢关华, 童华荣. 不同杀青温度对绿茶香型形成的影响[J]. 食品与发酵工业, 2020, 46(4): 197-203.
[9] 刘政海, 董志刚, 李晓梅, 谭敏, 杨镕兆, 杨兆亮, 唐晓萍. 黄土高原地区干红葡萄酒香气组分分析[J]. 食品与发酵工业, 2020, 46(24): 204-209.
[10] 坤吉瑞, 闫敬娜, 舒娜, 廖雪利, 童华荣. 不同日晒技术对晒青绿茶中挥发性化合物、脂肪酸和感官品质的影响[J]. 食品与发酵工业, 2020, 46(21): 154-160.
[11] 王美婷, 王缤晨, 肖琳, 柴多, 姜雨萌, 董亮. 发酵小麦粉加热过程中挥发性成分分析[J]. 食品与发酵工业, 2020, 46(20): 221-228.
[12] 汪韬, 温运启, 于娇, 薛勇, 薛长湖. 富含乳酸菌的脱腥海参肽粉的制备[J]. 食品与发酵工业, 2020, 46(18): 187-191.
[13] 张宇, 潘洁琼, 满都拉, 孙子羽, 陈忠军. 固态法小米醋发酵过程中的风味物质变化[J]. 食品与发酵工业, 2020, 46(17): 131-137.
[14] 李锐, 孙祖莉, 李来好, 杨贤庆, 魏涯, 岑剑伟, 相悦, 赵永强. 不同热加工方式对罗非鱼片食用品质的影响[J]. 食品与发酵工业, 2020, 46(14): 127-135.
[15] 杨进军, 胡金祥, 王林, 乔明锋, 何莲, 吴华昌, 邓静, 易宇文. 气质联用技术结合电子鼻分析红酸汤挥发性风味差异[J]. 食品与发酵工业, 2020, 46(14): 234-242.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn