Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (8): 283-289    DOI: 10.13995/j.cnki.11-1802/ts.025874
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
结合纳米材料的适配体传感器在重金属检测中的应用研究进展
王嫦嫦, 郑思洁, 战艺芳, 夏定, 白向茹, 王利华, 姚琪, 李婷婷*
(武汉市农业科学院环境与安全研究所,湖北 武汉, 430207)
Research progress of aptasensors combined with nanomaterials in heavy metal detection
WANG Changchang, ZHENG Sijie, ZHAN Yifang, XIA Ding, BAI Xiangru, WANG Lihua, YAO Qi, LI Tingting*
(Institute of Environment and Safety, Wuhan Academy of Agricultural Science, Wuhan 430207, China)
下载:  HTML   PDF (2527KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 将纳米材料独特的光学、电子和催化性能应用于适配体传感器中可大幅提高重金属检测的灵敏度并扩大选择性,是重金属检测领域的热点之一。该文综述了Pb2+、Hg2+、Cd2+等重金属离子的适配体序列,总结了多种结合纳米材料的适配体传感器在重金属检测中的技术应用及优缺点,并对适配体传感器在重金属检测领域的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王嫦嫦
郑思洁
战艺芳
夏定
白向茹
王利华
姚琪
李婷婷
关键词:  纳米材料  适配体  传感器  重金属  快速检测    
Abstract: The application of the unique optical, electronic and catalytic properties of nanomaterials to aptasensors can greatly improve the detection sensitivity of heavy metal and expand the selectivity, which is one of the hot spots in the field of heavy metal detection. This article summarized the aptamer sequences of heavy metal ions such as Pb2+, Hg2+, Cd2+, and reviewed the technical applications, advantages and disadvantages of various aptamer sensors combined with nanomaterials in heavy metal detection. The application prospects of the aptasensors in the field of heavy metal detection are forecasted.
Key words:  nanomaterials    aptamers    sensor    heavy metal    rapid detection
               出版日期:  2021-04-25      发布日期:  2021-05-20      期的出版日期:  2021-04-25
基金资助: 湖北省中央引导地方科技发展专项项目(2017ZYYD001);武汉市农科院2020年创新项目(CXJSFW202007-1)
作者简介:  硕士(李婷婷为通讯作者,E-mail:1159908626@qq.com)
引用本文:    
王嫦嫦,郑思洁,战艺芳,等. 结合纳米材料的适配体传感器在重金属检测中的应用研究进展[J]. 食品与发酵工业, 2021, 47(8): 283-289.
WANG Changchang,ZHENG Sijie,ZHAN Yifang,et al. Research progress of aptasensors combined with nanomaterials in heavy metal detection[J]. Food and Fermentation Industries, 2021, 47(8): 283-289.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.025874  或          http://sf1970.cnif.cn/CN/Y2021/V47/I8/283
[1] 于寒松, 隋佳辰, 代佳宇, 等.核酸适配体技术在食品重金属检测中的应用研究进展[J].食品科学, 2015, 36(15):228-233.YU H S, SUI J C, DAI J Y, et al.Advances in the application of aptamers to detect heavy metals in foods[J].Food Science, 2015, 36(15):228-233.
[2] SHARMA B, SINGH S, SIDDIQI N J.Biomedical implications of heavy metals induced imbalances in redox systems[J].Biomed Resarch Interational, 2015, 2014(1):1-26.
[3] RODOLFO F M, ISABEL R, ISABEL G P, et al.Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry[J].Journal of Food Composition & Analysis, 2015, 38:7-12.
[4] BUA D G, ANNUARIO G, ALBERGAMO A, et al.Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry[J].Food Additives & Contaminants Part B, 2016, 9(3):210-216.
[5] ZHAO J H, YAN X, ZHOU T Y, et al.Multi-throughput dynamic microwave-assisted leaching coupled with inductively coupled plasma atomic emission spectrometry for heavy metal analysis in soil[J].Journal of Analytical Atomic Spectrometry, 2015, 30(9):1 920-1 926.
[6] QIN Y Y, ZHANG Z H, LI L, et al.Inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) analysis of heavy metal content in Indocalamus tesselatus samples[J].Food Chemistry, 2013, 141(3):2 154-2 157.
[7] WANG L Y, PENG X L, FU H J, et al.Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food[J].Biosensors & Bioelectronics, 2020, 147:111 777.
[8] LI M, GOU H L, AL-OGAIDI I, et al.Nanostructured sensors for detection of heavy metals:A review[J].Acs Sustainable Chemistry & Engineering, 2013, 1(7):713-723.
[9] SUI J C, YU H S, DAI J Y, et al.Application of aptamer biosensor technology to detect heavy metal lead in food[J].Journal of Chinese Institute of Food Science & Technology, 2017, 17(8):203-209.
[10] LI J W, FANG X H, TAN W H.Molecular aptamer beacons for real-time protein recognition[J].Biochemical & Biophysical Research Communications, 2002, 292(1):31-40.
[11] YANG Y, LI W, SHEN P, et al.Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array[J].Sensors and Actuators B:Chemical, 2017, 248:351-358.
[12] WU Y G, ZHAN S S, XING H B, et al.Nanoparticles assembled by aptamers and crystal violet for arsenic(III)detection in aqueous solution based on a resonance Rayleigh scattering spectral assay[J].Nanoscale, 2012, 4(21):1-9.
[13] GOUD K, REDDY K, SATYANARAYANA M, et al.A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials[J].Microchimica Acta, 2020, 187(29):1-32.
[14] GUSCHLBAUER W, CHANTOT J, THIELE D.Four-stranded nucleic acid structures 25 years later:From guanosine gels to telomer DNA[J].Journal of Biomolecular Structure & Dynamics, 1990, 8(3):491-511.
[15] SMIRNOV I, SHAFER R H.Lead is unusually effective in sequence-specific folding of DNA[J].Journal of Molecular Biology, 2000, 296(1):1-5.
[16] GUPTA S D, SHELKE S A, LI N S, et al.Spinach RNA aptamer detects lead (II) with high selectivity[J].Chemical Communications, 2015, 51 (43):9 034-9 037.
[17] LIN Z Z, CHEN Y, LI X H, et al.Pb2+ induced DNA conformational switch from hairpin to G-quadruplex:electrochemical detection of Pb2+[J].Analyst, 2011, 136(11):2 367-2 372.
[18] LI F, FENG Y, ZHAO C, et al.Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead[J].Chemical Communications, 2011,47(43):11 909-11 911.
[19] LONG F, ZHU A, WANG H C.Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment[J].Analytica Chimica Acta, 2014, 849:43-49.
[20] LAN L Y, YAO Y, PING J F, et al.Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J].ACS Applied Materials & Interfaces, 2017, 9(28):23 287-23 301.
[21] DAIRAKU T, FURUITA K, SATO H, et al.Direct detection of the mercury-nitrogen bond in the thymine-HgII-thymine base-pair with 199Hg NMR spectroscopy[J].Chemical Communications, 2015, 51(40):8 488-8 491.
[22] TUREL I, KLJUN J.Interactions of metal ions with DNA, its constituents and derivatives, which may be relevant for antcancer research[J].Current Topics in Medicinal Chemistry, 2011, 11(21):2 661-2 687.
[23] HE J L, LIU G G, LI Z W, et al.Studies on the thymine-mercury- thymine base pairing in parallel and anti-parallel DNA duplexes[J].New Journal of Chemistry, 2015, 39(11):8 752-8 762.
[24] MIYAKE Y, TOGASHI H, TASHIRO M, et al.Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes[J].Journal of the American Chemical Society, 2006, 128(7):2 172-2 173.
[25] ONO A, CAO S, TOGASHI H, et al.Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes[J].Chemical Communications, 2008, 44(39):4 825-4 827.
[26] ZHENG Y, YANG C, YANG F, et al.Real-time study of interactions between cytosine-cytosine pairs in DNA oligonucleotides and silver ions using dual polarization interferometry[J].Analytical Chemistry, 2014, 86(8):3 849-3 855.
[27] WU D, WANG Y G, ZHANG Y, et al.Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+[J].Biosensors & Bioelectronics, 2016, 82:9-13.
[28] XI H Y, CUI M J, LI W, et al.Colorimetric detection of Ag+ based on C-Ag+-C binding as a bridge between gold nanoparticles[J].Sensors & Actuators B:Chemical, 2017, 250:641-646.
[29] WU Y G, ZHAN S S, WANG L M, et al.Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles[J].The Analyst, 2014, 139(6):1 550-1 561.
[30] KIM M, UM H J, BANG S B, et al.Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer[J].Environmental Science & Technology, 2009, 43(24):9 335-9 340.
[31] WU Y G, ZHAN S S, WANG F, et al.Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution[J].Chemical Communications, 2012, 48(37):4 459-4 461.
[32] WU Y G, WANG F, ZHAN S S, et al.Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(III)[J].RSC Advances, 2013, 3(48):25 614-25 619.
[33] 郭婷, 林淑凤, 马良, 等.基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J].食品与发酵工业, 2019, 45(5):218-223.GUO T, LIN S F, MA L, et al.A fluorescent biosensor based on magnetic nanoparticles and aptamer for detecting AFM1 in milk[J].Food and Fermentation Industries, 2019, 45(5):218-223.
[34] XU Y W, ZHANG W, SHI J Y, et al.Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables[J].Food Chemistry, 2020, 322:126 762.
[35] ZHANG Z H, JI H F, SONG Y P, et al.Fe(III)-based metal-organic framework-derived core-shell nanostructure:Sensitive electrochemical platform for high trace determination of heavy metal ions[J].Biosensors & Bioelectronics, 2017, 94:358-364.
[36] MIAO P, LIU L, LI Y, et al.A novel electrochemical method to detect mercury (II) ions[J].Electrochemistry Communications, 2009, 11(10):1 904-1 907.
[37] GU H D, YANG Y Y, CHEN F, et al.Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJ f exonuclease-mediated amplification[J].Chemical Engineering Journal, 2018, 353:305-310.
[38] ZHANG Y Y, ZHANG C, MA R, et al.An ultra-sensitive au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions[J].Materials Science & Engineering C, 2017, 75:175-181.
[39] ENSAFI A A, AKBARIAN F, HEYDARI S E, et al.A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite[J].Biosensors & Bioelectronics, 2018, 122(30):25-31.
[40] SONG X L, FU B C, LAN Y F, et al.Label-free fluorescent aptasensor berberine-based strategy for ultrasensitive detection of Hg2+ ion[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 204:301-307.
[41] SUN C Y, SUN R, CHEN Y Q, et al.Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food[J].Sensors & Actuators B Chemical, 2018, 255(1):775-780.
[42] ZHAO S Q, XIAO Y S, LU J C, et al.A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion[J].Biosensors & Bioelectronics, 2015, 68:225-231.
[43] WU C S, KHAING O, FAN X.Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes[J].Acs Nano, 2010, 4(10):5 897-5 904.
[44] 王嫦嫦, 马良, 刘微, 等.基于先进材料的适配体传感器在真菌毒素快速检测中的研究进展[J].食品科学, 2020, 41(3):305-313.WANG C C, MA L, LIU W, et al.Advances in aptasensors based on smart materials for rapid detection of mycotoxins[J].Food Science, 2020, 41(3):305-313.
[45] FARZIN L, SHAMSIPUR M, SHEIBANI S.A review:Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals[J].Talanta, 2017, 174(1):619-627.
[46] LAN L Y, YAO Y, PING J F, et al.Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J].ACS Applied Materials & Interfaces, 2017, 9(28):23 287-23 301.
[47] TAGHDISI S M, DANESH N M, LAVAEE P, et al.An aptasensor for selective, sensitive and fast detection of lead(Ⅱ) based on polyethyleneimine and gold nanoparticles[J].Environmental Toxicology and Pharmacology, 2015, 39(3):1 206-1 211.
[48] LI L H, FENG D X, FANG X, et al.Visual sensing of Hg2+ using unmodified Au@Ag core-shell nanoparticles[J].Journal of Nanostructure in Chemistry, 2014, 4:117-120.
[49] ZHANG Z, CHEN C L, ZHAO X S.A simple and sensitive biosensor based on silver enhancement of aptamer-gold nanoparticle aggregation[J].Electroanalysis, 2009, 21(21):1 316-1 320.
[50] CHEN B B, WANG Z B, HU D X, et al.Determination of nanomolar levels of mercury(II) by exploiting the silver stain enhancement of the aggregation of aptamer-functionalized gold nanoparticles[J].Analytical Letters, 2014, 47(5):795-806.
[51] SHARMA B, FRONTIERA R R, HENRY A I, et al.SERS:Materials, applications, and the future[J]. Materials Today,2012, 15(1-2):16-25.
[52] GUO S J, DONG S J.Metal nanomaterial-based self-assembly:Development, electrochemical sensing and SERS applications[J].Journal of Materials Chemistry, 2011, 21(42):16 704-16 716.
[53] DU Y X, LIU R L, LIU B H, et al.Surface-enhanced raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange[J].Analytical Chemistry, 2013, 85(6):3 160-3 165.
[54] LU Y L, ZHONG J, YAO G H, et al.A label-free SERS approach to quantitative and selective detection of mercury (Ⅱ) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles[J].Sensors and Actuators, 2018, 258:365-372.
[1] 赵海萍, 南丽娟, 雒雪丽, 杨伟霞, 韩雍, 李忠宏. Ni/Co层状氢氧化物模拟氧化物酶可视化检测海产品中Hg2+[J]. 食品与发酵工业, 2021, 47(8): 204-211.
[2] 宋亚宁, 胡超琼, 霍秋宇, 王力均, 陈祥贵, 黄玉坤. 基于核酸适配体识别-时间分辨荧光共振能量转移检测牛奶中培氟沙星兽药残留[J]. 食品与发酵工业, 2021, 47(7): 244-250.
[3] 钱蕾, 刘延峰, 李江华, 刘龙, 堵国成. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6.
[4] 李姝荟, 刘微, 郭婷, 周鸿媛, 张宇昊, 刘晓竹, 马良. 基于ZnO纳米刷的展青霉素电化学适配体传感器的构建与应用[J]. 食品与发酵工业, 2021, 47(3): 157-163.
[5] 陈威风, 陈薇, 蔡颖, 崔丽伟, 郝修震, 王小红. 基于核酸适配体结合纳米金模拟酶用于单增李斯特菌的快速检测[J]. 食品与发酵工业, 2021, 47(3): 176-180.
[6] 冯林, 陈雪岚. 新型纳米材料与噬菌体展示技术在真菌毒素检测中的应用[J]. 食品与发酵工业, 2021, 47(3): 230-236.
[7] 徐文文, 梁玉林, 王云霞, 刘秀, 尹建军, 周广军, 宋全厚, 丁梦璇, 周鹏飞. 二重环介导等温扩增法快速检测乳粉中沙门氏菌和金黄色葡萄球菌[J]. 食品与发酵工业, 2021, 47(2): 241-246.
[8] 石佳佳, 齐天翊, 张萌, 陈淋霞, 张笛, 包智华. 自制酵素中乳酸菌群动态分析及对重金属的吸附积累特性[J]. 食品与发酵工业, 2021, 47(1): 14-20.
[9] 李爱阳, 伍素云, 刘宁, 刘水林. 电感耦合等离子体串联质谱测定水产品中的痕量重金属元素[J]. 食品与发酵工业, 2020, 46(9): 260-264.
[10] 万晓楠, 畅晓晖, 齐玮, 高欣, 乔彬, 杨向莹, 李小林, 张惠媛, 石嵩, 张捷, 周熙成. 基于近红外免疫层析技术快速检测食源性甲型肝炎病毒[J]. 食品与发酵工业, 2020, 46(7): 213-217.
[11] 周新丽, 申炳阳, 高丽娟, 孔兵, 叶嘉明. 用于五种动物源性成分快速检测的离心式微流控芯片系统研制[J]. 食品与发酵工业, 2020, 46(3): 229-234.
[12] 杨彩玲, 赵雪珺, 李建颖, 赵国虎, 张丽, 曹文涛. 硅量子点荧光传感器快速检测鲜奶中的四环素[J]. 食品与发酵工业, 2020, 46(3): 264-268.
[13] 王瑛, 林钰清, 李爱军, 林启豪, 薛雪, 王洪飞, 陈琬颖. 重金属危害机制及益生菌清除重金属机制研究进展[J]. 食品与发酵工业, 2020, 46(3): 281-292.
[14] 胡元庆, 沈子晨, 李凤霞, 吕琳雪, 周赞虎. 基于blaCARB-17基因建立水产品中副溶血弧菌的环介导等温扩增技术检测方法[J]. 食品与发酵工业, 2020, 46(23): 198-206.
[15] 周胜虎, 毛银, 邓禹. 发酵过程中时空水平的动态调控策略研究进展[J]. 食品与发酵工业, 2020, 46(21): 277-283.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn