Abstract: The application of the unique optical, electronic and catalytic properties of nanomaterials to aptasensors can greatly improve the detection sensitivity of heavy metal and expand the selectivity, which is one of the hot spots in the field of heavy metal detection. This article summarized the aptamer sequences of heavy metal ions such as Pb2+, Hg2+, Cd2+, and reviewed the technical applications, advantages and disadvantages of various aptamer sensors combined with nanomaterials in heavy metal detection. The application prospects of the aptasensors in the field of heavy metal detection are forecasted.
王嫦嫦,郑思洁,战艺芳,等. 结合纳米材料的适配体传感器在重金属检测中的应用研究进展[J]. 食品与发酵工业, 2021, 47(8): 283-289.
WANG Changchang,ZHENG Sijie,ZHAN Yifang,et al. Research progress of aptasensors combined with nanomaterials in heavy metal detection[J]. Food and Fermentation Industries, 2021, 47(8): 283-289.
于寒松, 隋佳辰, 代佳宇, 等.核酸适配体技术在食品重金属检测中的应用研究进展[J].食品科学, 2015, 36(15):228-233.YU H S, SUI J C, DAI J Y, et al.Advances in the application of aptamers to detect heavy metals in foods[J].Food Science, 2015, 36(15):228-233.
[2]
SHARMA B, SINGH S, SIDDIQI N J.Biomedical implications of heavy metals induced imbalances in redox systems[J].Biomed Resarch Interational, 2015, 2014(1):1-26.
[3]
RODOLFO F M, ISABEL R, ISABEL G P, et al.Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry[J].Journal of Food Composition & Analysis, 2015, 38:7-12.
[4]
BUA D G, ANNUARIO G, ALBERGAMO A, et al.Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry[J].Food Additives & Contaminants Part B, 2016, 9(3):210-216.
[5]
ZHAO J H, YAN X, ZHOU T Y, et al.Multi-throughput dynamic microwave-assisted leaching coupled with inductively coupled plasma atomic emission spectrometry for heavy metal analysis in soil[J].Journal of Analytical Atomic Spectrometry, 2015, 30(9):1 920-1 926.
[6]
QIN Y Y, ZHANG Z H, LI L, et al.Inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) analysis of heavy metal content in Indocalamus tesselatus samples[J].Food Chemistry, 2013, 141(3):2 154-2 157.
[7]
WANG L Y, PENG X L, FU H J, et al.Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food[J].Biosensors & Bioelectronics, 2020, 147:111 777.
[8]
LI M, GOU H L, AL-OGAIDI I, et al.Nanostructured sensors for detection of heavy metals:A review[J].Acs Sustainable Chemistry & Engineering, 2013, 1(7):713-723.
[9]
SUI J C, YU H S, DAI J Y, et al.Application of aptamer biosensor technology to detect heavy metal lead in food[J].Journal of Chinese Institute of Food Science & Technology, 2017, 17(8):203-209.
[10]
LI J W, FANG X H, TAN W H.Molecular aptamer beacons for real-time protein recognition[J].Biochemical & Biophysical Research Communications, 2002, 292(1):31-40.
[11]
YANG Y, LI W, SHEN P, et al.Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array[J].Sensors and Actuators B:Chemical, 2017, 248:351-358.
[12]
WU Y G, ZHAN S S, XING H B, et al.Nanoparticles assembled by aptamers and crystal violet for arsenic(III)detection in aqueous solution based on a resonance Rayleigh scattering spectral assay[J].Nanoscale, 2012, 4(21):1-9.
[13]
GOUD K, REDDY K, SATYANARAYANA M, et al.A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials[J].Microchimica Acta, 2020, 187(29):1-32.
[14]
GUSCHLBAUER W, CHANTOT J, THIELE D.Four-stranded nucleic acid structures 25 years later:From guanosine gels to telomer DNA[J].Journal of Biomolecular Structure & Dynamics, 1990, 8(3):491-511.
[15]
SMIRNOV I, SHAFER R H.Lead is unusually effective in sequence-specific folding of DNA[J].Journal of Molecular Biology, 2000, 296(1):1-5.
[16]
GUPTA S D, SHELKE S A, LI N S, et al.Spinach RNA aptamer detects lead (II) with high selectivity[J].Chemical Communications, 2015, 51 (43):9 034-9 037.
[17]
LIN Z Z, CHEN Y, LI X H, et al.Pb2+ induced DNA conformational switch from hairpin to G-quadruplex:electrochemical detection of Pb2+[J].Analyst, 2011, 136(11):2 367-2 372.
[18]
LI F, FENG Y, ZHAO C, et al.Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead[J].Chemical Communications, 2011,47(43):11 909-11 911.
[19]
LONG F, ZHU A, WANG H C.Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment[J].Analytica Chimica Acta, 2014, 849:43-49.
[20]
LAN L Y, YAO Y, PING J F, et al.Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J].ACS Applied Materials & Interfaces, 2017, 9(28):23 287-23 301.
[21]
DAIRAKU T, FURUITA K, SATO H, et al.Direct detection of the mercury-nitrogen bond in the thymine-HgII-thymine base-pair with 199Hg NMR spectroscopy[J].Chemical Communications, 2015, 51(40):8 488-8 491.
[22]
TUREL I, KLJUN J.Interactions of metal ions with DNA, its constituents and derivatives, which may be relevant for antcancer research[J].Current Topics in Medicinal Chemistry, 2011, 11(21):2 661-2 687.
[23]
HE J L, LIU G G, LI Z W, et al.Studies on the thymine-mercury- thymine base pairing in parallel and anti-parallel DNA duplexes[J].New Journal of Chemistry, 2015, 39(11):8 752-8 762.
[24]
MIYAKE Y, TOGASHI H, TASHIRO M, et al.Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes[J].Journal of the American Chemical Society, 2006, 128(7):2 172-2 173.
[25]
ONO A, CAO S, TOGASHI H, et al.Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes[J].Chemical Communications, 2008, 44(39):4 825-4 827.
[26]
ZHENG Y, YANG C, YANG F, et al.Real-time study of interactions between cytosine-cytosine pairs in DNA oligonucleotides and silver ions using dual polarization interferometry[J].Analytical Chemistry, 2014, 86(8):3 849-3 855.
[27]
WU D, WANG Y G, ZHANG Y, et al.Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+[J].Biosensors & Bioelectronics, 2016, 82:9-13.
[28]
XI H Y, CUI M J, LI W, et al.Colorimetric detection of Ag+ based on C-Ag+-C binding as a bridge between gold nanoparticles[J].Sensors & Actuators B:Chemical, 2017, 250:641-646.
[29]
WU Y G, ZHAN S S, WANG L M, et al.Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles[J].The Analyst, 2014, 139(6):1 550-1 561.
[30]
KIM M, UM H J, BANG S B, et al.Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer[J].Environmental Science & Technology, 2009, 43(24):9 335-9 340.
[31]
WU Y G, ZHAN S S, WANG F, et al.Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution[J].Chemical Communications, 2012, 48(37):4 459-4 461.
[32]
WU Y G, WANG F, ZHAN S S, et al.Regulation of hemin peroxidase catalytic activity by arsenic-binding aptamers for the colorimetric detection of arsenic(III)[J].RSC Advances, 2013, 3(48):25 614-25 619.
[33]
郭婷, 林淑凤, 马良, 等.基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J].食品与发酵工业, 2019, 45(5):218-223.GUO T, LIN S F, MA L, et al.A fluorescent biosensor based on magnetic nanoparticles and aptamer for detecting AFM1 in milk[J].Food and Fermentation Industries, 2019, 45(5):218-223.
[34]
XU Y W, ZHANG W, SHI J Y, et al.Impedimetric aptasensor based on highly porous gold for sensitive detection of acetamiprid in fruits and vegetables[J].Food Chemistry, 2020, 322:126 762.
[35]
ZHANG Z H, JI H F, SONG Y P, et al.Fe(III)-based metal-organic framework-derived core-shell nanostructure:Sensitive electrochemical platform for high trace determination of heavy metal ions[J].Biosensors & Bioelectronics, 2017, 94:358-364.
[36]
MIAO P, LIU L, LI Y, et al.A novel electrochemical method to detect mercury (II) ions[J].Electrochemistry Communications, 2009, 11(10):1 904-1 907.
[37]
GU H D, YANG Y Y, CHEN F, et al.Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJ f exonuclease-mediated amplification[J].Chemical Engineering Journal, 2018, 353:305-310.
[38]
ZHANG Y Y, ZHANG C, MA R, et al.An ultra-sensitive au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions[J].Materials Science & Engineering C, 2017, 75:175-181.
[39]
ENSAFI A A, AKBARIAN F, HEYDARI S E, et al.A novel aptasensor based on 3D-reduced graphene oxide modified gold nanoparticles for determination of arsenite[J].Biosensors & Bioelectronics, 2018, 122(30):25-31.
[40]
SONG X L, FU B C, LAN Y F, et al.Label-free fluorescent aptasensor berberine-based strategy for ultrasensitive detection of Hg2+ ion[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 204:301-307.
[41]
SUN C Y, SUN R, CHEN Y Q, et al.Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food[J].Sensors & Actuators B Chemical, 2018, 255(1):775-780.
[42]
ZHAO S Q, XIAO Y S, LU J C, et al.A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion[J].Biosensors & Bioelectronics, 2015, 68:225-231.
[43]
WU C S, KHAING O, FAN X.Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes[J].Acs Nano, 2010, 4(10):5 897-5 904.
[44]
王嫦嫦, 马良, 刘微, 等.基于先进材料的适配体传感器在真菌毒素快速检测中的研究进展[J].食品科学, 2020, 41(3):305-313.WANG C C, MA L, LIU W, et al.Advances in aptasensors based on smart materials for rapid detection of mycotoxins[J].Food Science, 2020, 41(3):305-313.
[45]
FARZIN L, SHAMSIPUR M, SHEIBANI S.A review:Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals[J].Talanta, 2017, 174(1):619-627.
[46]
LAN L Y, YAO Y, PING J F, et al.Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants[J].ACS Applied Materials & Interfaces, 2017, 9(28):23 287-23 301.
[47]
TAGHDISI S M, DANESH N M, LAVAEE P, et al.An aptasensor for selective, sensitive and fast detection of lead(Ⅱ) based on polyethyleneimine and gold nanoparticles[J].Environmental Toxicology and Pharmacology, 2015, 39(3):1 206-1 211.
[48]
LI L H, FENG D X, FANG X, et al.Visual sensing of Hg2+ using unmodified Au@Ag core-shell nanoparticles[J].Journal of Nanostructure in Chemistry, 2014, 4:117-120.
[49]
ZHANG Z, CHEN C L, ZHAO X S.A simple and sensitive biosensor based on silver enhancement of aptamer-gold nanoparticle aggregation[J].Electroanalysis, 2009, 21(21):1 316-1 320.
[50]
CHEN B B, WANG Z B, HU D X, et al.Determination of nanomolar levels of mercury(II) by exploiting the silver stain enhancement of the aggregation of aptamer-functionalized gold nanoparticles[J].Analytical Letters, 2014, 47(5):795-806.
[51]
SHARMA B, FRONTIERA R R, HENRY A I, et al.SERS:Materials, applications, and the future[J]. Materials Today,2012, 15(1-2):16-25.
[52]
GUO S J, DONG S J.Metal nanomaterial-based self-assembly:Development, electrochemical sensing and SERS applications[J].Journal of Materials Chemistry, 2011, 21(42):16 704-16 716.
[53]
DU Y X, LIU R L, LIU B H, et al.Surface-enhanced raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange[J].Analytical Chemistry, 2013, 85(6):3 160-3 165.
[54]
LU Y L, ZHONG J, YAO G H, et al.A label-free SERS approach to quantitative and selective detection of mercury (Ⅱ) based on DNA aptamer-modified SiO2@Au core/shell nanoparticles[J].Sensors and Actuators, 2018, 258:365-372.