Please wait a minute...
食品与发酵工业  2021, Vol. 47 Issue (9): 293-298    DOI: 10.13995/j.cnki.11-1802/ts.025941
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
任春霖, 董红丽, 王风芹*, 宋安东
(河南农业大学 生命科学学院,河南 郑州,450002)
Research progress of xylooligosaccharides production technology and its prebiotic effect on animals
REN Chunlin, DONG Hongli, WANG Fengqin*, SONG Andong
(College of Life Science,Henan Agricultural University,Zhengzhou,450002,China)
下载:  HTML  PDF (1443KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 低聚木糖(xylooligosaccharides,XOS)是一类具有益生元活性的可溶性膳食纤维,有利于改善动物肠道功能,提高免疫力,现已经被广泛应用于食品、医药、饲料等方面。木质纤维素的主要成分是纤维素、半纤维素和木质素,其中半纤维素中含有丰富的木聚糖,可以用作生产XOS的原料。该文总结了近年来XOS生产技术研究进展,并介绍了XOS作为饲料添加剂对动物的益生作用,以期为XOS的工业化生产与应用提供参考。
E-mail Alert
关键词:  木质纤维素  低聚木糖  饲料  肠道微生物  益生元    
Abstract: Xylooligosaccharides (XOS), a type of soluble dietary fiber with prebiotic activity, is conducive to improve intestinal function and immune function for animals. It has been widely used in food, medicine, feed and other fields. The main components of lignocellulose are cellulose, hemicellulose and lignin. Hemicellulose is rich in xylan, which can be used as raw materials for producing XOS. In order to provide a reference for industrial production and application of XOS, this paper summarized the research progress of XOS production technology in recent years and introduced the prebiotic effect of XOS as a feed additive to animals.
Key words:  lignocellulose    xylooligosaccharides    feed    intestinal microbiota    prebiotics
收稿日期:  2020-10-20      修回日期:  2020-11-09           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: 中原千人计划项目(204200510018)
作者简介:  硕士研究生(王风芹教授为通讯作者,
任春霖,董红丽,王风芹,等. 低聚木糖生产技术及其对动物益生作用研究进展[J]. 食品与发酵工业, 2021, 47(9): 293-298.
REN Chunlin,DONG Hongli,WANG Fengqin,et al. Research progress of xylooligosaccharides production technology and its prebiotic effect on animals[J]. Food and Fermentation Industries, 2021, 47(9): 293-298.
链接本文:  或
[1] BHAT M K.Oligosaccharides as functional food ingredients and their role in improving the nutritional quality of human food and health[J].Recent Research Developments in Agricultural and Food Chemistry,1998,2(2):787-802.
[2] ROBERFROID M,SLAVIN J.Nondigestible oligosaccharides[J].Critical Reviews in Food Science and Nutrition,2000,40(6):461-480.
[3] SOMMER F,BÄCKHED F.The gut microbiota—masters of host development and physiology[J].Nature Reviews Microbiology,2013,11(4):227-238.
[4] CHILDS C E,RÖYTIÖ H,ALHONIEMI E,et al.Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp.lactis induce bifidogenesis and modulate markers of immune function in healthy adults:A double-blind,placebo-controlled,randomised,factorial cross-over study[J].British Journal of Nutrition,2014,111(11):1 945-1 956.
[5] PU J H,ZHAO X,WANG Q C,et al.Development and validation of a HPLC method for determination of degree of polymerization of xylo-oligosaccharides[J].Food Chemistry,2016,213:654-659.
[6] VÁZQUEZ M J,ALONSO J L,DOMÍNGUEZ H,et al.Xylooligosaccharides:Manufacture and applications[J].Trends in Food Science & Technology,2000,11(11):387-393.
[7] AMORIM C,SILVÉRIO S C,PRATHER K L J,et al.From lignocellulosic residues to market:Production and commercial potential of xylooligosaccharides[J].Biotechnology Advances,2019,37(7):107 397.
[8] ANTOINE C,PEYRON S,LULLIEN-PELLERIN V,et al.Wheat bran tissue fractionation using biochemical markers[J].Journal of Cereal Science,2004,39(3):387-393.
[9] GUO J,CAO R,HUANG K,et al.Comparison of selective acidolysis of xylan and enzymatic hydrolysability of cellulose in various lignocellulosic materials by a novel xylonic acid catalysis method[J].Bioresource Technology,2020,304:122 943.
[10] ZHOU X,XU Y.Eco-friendly consolidated process for co-production of xylooligosaccharides and fermentable sugars using self-providing xylonic acid as key pretreatment catalyst[J].Biotechnology for Biofuels,2019,12(1):1-10.
[11] 李想, 陈妮,齐学敏,等.乙醇钠预处理木质纤维素原料的组分及结构特性[J].林业科学,2020,56(2):156-163.
LI X,CHEN N,QI X M,et al.Composition and structure characteristics of sodium ethoxide pretreated lignocelluloses biomass[J].Scientia Silvae Sinicae,2020,56(2):156-163.
[12] CHEN M H,BOWMAN M J,DIEN B S,et al.Autohydrolysis of Miscanthus x giganteus for the production of xylooligosaccharides (XOS):Kinetics,characterization and recovery[J].Bioresource Technology,2014,155:359-365.
[13] 武小芬,陈亮,齐慧,等.辐照协同甲酸分离油茶壳中纤维素、木质素和木糖的工艺研究[J].核农学报,2020,34(9):1 975-1 982.
WU X F,CHEN L,QI H,et al.Separation process of cellulose,lignin and xylose from Camellia oleifera shell by irradiation and formic acid[J].Journal of Nuclear Agricultural Sciences,2020,34(9):1 975-1 982.
[14] BHATIA L,JOHRI S,AHMAD R.An economic and ecological perspective of ethanol production from renewable agro waste:A review[J].AMB Express,2012,2(1):65.
[15] FANG H,KANDHOLA G,RAJAN K,et al.Effects of oligosaccharides isolated from pinewood hot water pre-hydrolyzates on recombinant cellulases[J].Frontiers in Bioengineering and Biotechnology,2018,6:55.
[16] SUREK E,BUYUKKILECI A O.Production of xylooligosaccharides by autohydrolysis of hazelnut (Corylus avellana L.) shell[J].Carbohydrate Polymers,2017,174:565-571.
[17] ZHANG W W,YOU Y Z,LEI F H,et al.Acetyl-assisted autohydrolysis of sugarcane bagasse for the production of xylo-oligosaccharides without additional chemicals[J].Bioresource Technology,2018,265:387-393.
[18] ZHANG H H,XU Y,YU S Y.Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis[J].Bioresource Technology,2017,234:343-349.
[19] YOU Y Z,ZHANG X K,LI P F,et al.Co-production of xylooligosaccharides and activated carbons from Camellia oleifera shell treated by the catalysis and activation of zinc chloride[J].Bioresource Technology,2020,306:123 131.
[20] ZHANG W W,LEI F H,LI P F,et al.Co-catalysis of magnesium chloride and ferrous chloride for xylooligosaccharides and glucose production from sugarcane bagasse[J].Bioresource Technology,2019,291:121 839.
[21] BACOVSKY D,LUDWICZEK N,OGNISSANTO M,et al.Status of advanced biofuels demonstration facilities in 2012-A report to IEA bioenergy task 39[EB/OL].[2017-06-10]
[22] 邱盼盼,任天宝,王风芹,等.木质纤维原料蒸汽爆破-生物联合预处理及其生物脱毒研究进展[J].生物质化学工程,2013,47(2):23-28.
QIU P P,REN T B,WANG F Q,et al.Research progress on steam explosion-biological pretreatment of the lignocellulose and simultaneous bio-detoxification[J].Biomass Chemical Engineering,2013,47(2):23-28.
[23] BHATIA R,WINTERS A,BRYANT D N,et al.Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment[J].Bioresource Technology,2020,296:122 285.
[24] CARVALHO A F A,MARCONDES W F,DE OLIVA NETO P,et al.The potential of tailoring the conditions of steam explosion to produce xylooligosaccharides from sugarcane bagasse[J].Bioresource Technology,2018,250:221-229.
[25] BIAN J,PENG P,PENG F,et al.Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses[J].Food Chemistry,2014,156:7-13.
[26] COSTA J R,TONON R V,GOTTSCHALK L M F,et al.Enzymatic production of xylooligosaccharides from Brazilian Syrah grape pomace flour:A green alternative to conventional methods for adding value to agricultural by-products[J].Journal of the Science of Food and Agriculture,2019,99(3):1 250-1 257.
[27] BHATIA L,SHARMA A,BACHHETI R K,et al.Lignocellulose derived functional oligosaccharides:Production,properties,and health benefits[J].Preparative Biochemistry & Biotechnology,2019,49(8):744-758.
[28] CHEN M X,LU J,CHENG Y,et al.Novel process for the coproduction of xylooligosaccharide and glucose from reed scraps of reed pulp mill[J].Carbohydrate Polymers,2019,215:82-89.
[29] SINGH R D,BANERJEE J,SASMAL S,et al.High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation[J].Bioresource Technology,2018,256:110-117.
[30] HAO X X,WEN P Y,WANG J,et al.Production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar by two-step enzymatic hydrolysis[J].Bioresource Technology,2020,297:122 349.
[31] WEN P Y,ZHANG T,WANG J Y,et al.Production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and peroxide/acetic acid pretreatment[J].Biotechnology for Biofuels,2019,12(1):1-13.
[32] ZHOU X,XU Y.Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid[J].Bioresource Technology,2019,282:81-87.
[33] 董吉冉,杨桂花,吉兴香,等.微波辅助酸处理桉木预水解液纯化制备低聚木糖[J].中国造纸,2019,38(6):7-13.
DONG J R,YANG G H,JI X X,et al.Improvement of xylooligosaccharides content of Eucalyptus pre-hydrolysis liquor with microwave-assisted acid treatment[J].China Pulp & Paper,2019,38(6):7-13.
[34] AHMAD N,ZAKARIA M R,MOHD YUSOFF M Z,et al.Subcritical water-carbon dioxide pretreatment of oil palm mesocarp fiber for xylooligosaccharide and glucose production[J].Molecules,2018,23(6):1 310.
[35] 邓元元, 胡超,陈思宇,等.啤酒糟制备低聚木糖功能饲料添加剂酶解条件优化[J].中国饲料,2019,9:54-62.
DENG Y Y,HU C,CHEN S Y,et al.Enzymolysis process optimization of xylooligosaccharide functional feed additive from brewers'grains[J].China Feed,2019,9:54-62.
[36] 蒋随新,卢春艳,李成喜,等.用氢氧化钾和过氧化氢从甘蔗渣中提取木聚糖的条件优化及甘蔗渣木聚糖酶解产低聚木糖的分析[J].基因组学与应用生物学,2017,36(9):3 863-3 870.
JIANG S X,LU C Y,LI C X,et al.The optimization of extracting xylan from sugarcane bagasses by using potassium hydroxide and H2O2 and the analysis of xylooligosaccharides produced by xylanase from sugarcane bagasse[J].Genomics and Applied Biology,2017,36(9):3 863-3 870.
[37] LI H L,CHEN X D,XIONG L,et al.Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylooligosaccharides and fermentable sugars[J].Bioresource Technology,2019,275:345-351.
[38] 关海宁,赵晓伟,黄秀琦,等.高压蒸煮协同木聚糖酶制备稻壳低聚木糖的研究[J].粮食与油脂,2018,31(7):39-42.
GUAN H N,ZHAO X W,HUANG X Q,et al.Study on preparation of xylooligosaccharide from rice husk by high pressure cooking-assisted xylanase[J].Cereals & Oils,2018,31(7):39-42.
[39] 关海宁,赵晓伟,刁小琴,等.响应面优化微波结合木聚糖酶制备稻壳低聚木糖工艺研究[J].中国酿造,2019,38(1):129-133.
GUAN H N,ZHAO X W,DIAO X Q,et al,Optimization of preparation process of xylooligosaccharide from rice husk by microwave pretreatment-assisted xylanase[J].China Brewing,2019,38(1):129-133.
[40] TENG C,YAN Q J,JIANG Z Q,et al.Production of xylooligosaccharides from the steam explosion liquor of corncobs coupled with enzymatic hydrolysis using a thermostable xylanase[J].Bioresource Technology,2010,101(19):7 679-7 682.
[41] ÁLVAREZ C,GONZÁLEZ A,NEGRO M J,et al.Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides[J].Industrial Crops and Products,2017,99:41-48.
[42] PAN J,YIN J,ZHANG K,et al.Dietary xylooligosaccharide supplementation alters gut microbial composition and activity in pigs according to age and dose[J].AMB Express,2019,9(1):134.
[43] HANSEN C H F,LARSEN C S,PETERSSON H O,et al.Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice[J].Diabetologia,2019,62(9):1 689-1 700.
[44] EAIMWORAWUTHIKUL S,TUNAPONG W,CHUNCHAI T,et al.Altered gut microbiota ameliorates bone pathology in the mandible of obese-insulin-resistant rats[J].European Journal of Nutrition,2020,59(4):1 453-1 462.
[45] YIN J,LI F N,KONG X F,et al.Dietary xylooligosaccharide improves intestinal functions in weaned piglets[J].Food & Function,2019,10(5):2 701-2 709.
[46] RIBEIRO T,CARDOSO V,FERREIRA L M A,et al.Xylooligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers[J].Poultry Science,2018,97(12):4 330-4 341.
[47] LIU J B,CAO S C,LIU J,et al.Effect of probiotics and xylooligosaccharide supplementation on nutrient digestibility,intestinal health and noxious gas emission in weanling pigs[J].Asian-Australasian Journal of Animal Sciences.2018,31(10):1 660-1 669.
[48] ABDELMALEK B E,DRISS D,KALLEL F,et al.Effect of xylan oligosaccharides generated from corncobs on food acceptability,growth performance,haematology and immunological parameters of Dicentrarchus labrax fingerlings[J].Fish Physiology and Biochemistry,2015,41(6):1 587-1 596.
[49] ABASUBONG K P,LIU W B,ZHANG D D,et al.Fishmeal replacement by rice protein concentrate with xylooligosaccharides supplement benefits the growth performance,antioxidant capability and immune responses against Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala)[J].Fish & Shellfish Immunology,2018,78:177-186.
[50] YU X,YIN J,LI L,et al.Prebiotic potential of xylooligosaccharides derived from corn cobs and their in vitro antioxidant activity when combined with Lactobacillus[J].Journal of Microbiology and Biotechnology,2015,25(7):1 084-1 092.
[1] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[2] 徐铮, 徐恺, 陈昱金, 李丽, 付铭洋. 异构酶在生物制造中的研究进展[J]. 食品与发酵工业, 2021, 47(5): 244-251.
[3] 葛茵, 向沙沙, 张亚林, 郑谊青, 李勉, 朱炫. 木糖醇益生功能研究进展[J]. 食品与发酵工业, 2021, 47(5): 267-272.
[4] 李霞, 陈海鸥, 韩淑芳, 陆凤莹, 周玉恒, 单杨, 李静. 羧甲基化木聚糖的益生元作用研究[J]. 食品与发酵工业, 2021, 47(2): 45-50.
[5] 杨开, 张雅杰, 张酥, 蔡铭, 皮雄娥, 胡君荣, 关荣发, 孙培龙. 灵芝孢子粉低聚糖的制备及调节肠道菌群功能研究[J]. 食品与发酵工业, 2020, 46(9): 37-42.
[6] 李国强, 罗平, 康佳炜, 胡瑞舟, 张健. Rhodopseudomonas capsulate诱变利用木糖与酚转化秸秆制饲料[J]. 食品与发酵工业, 2020, 46(6): 199-204.
[7] 陈韫慧, 方思璇, 陈佳琪, 郭振新, 胡宇超, 艾连中, 王光强. 不同益生元对植物乳杆菌生长的影响[J]. 食品与发酵工业, 2020, 46(21): 28-33.
[8] 杨晓燕, 何云山, 谭周进, 肖丹, 曾钰婷, 曾晨. 不同剂量植物油对小鼠肠道微生物、酶活性及血常规的影响[J]. 食品与发酵工业, 2020, 46(20): 101-106.
[9] 刘蓉, 栾春光, 王德良, 覃思, 郝飞克. 基于高通量测序分析黄酒对D-半乳糖致衰老小鼠模型肠道微生物菌群的影响[J]. 食品与发酵工业, 2020, 46(2): 32-39.
[10] 林丽, 邓倩, 罗琳, 康渝接, 严唯玮, 何利, 敖晓琳, 刘书亮. 代谢多种低聚糖乳酸菌的筛选鉴定及其部分益生特性研究[J]. 食品与发酵工业, 2020, 46(17): 80-86.
[11] 汪诗欣, 开朗, 杨静怡, 纪星名, 钱涵祺, 徐岩, 杜海. 浓香型白酒中短链脂肪酸及其乙酯对人体的影响[J]. 食品与发酵工业, 2020, 46(16): 257-263.
[12] 王如月, 余讯, 徐静静, 朱莉, 詹晓北, 张洪涛. 燕麦β-葡聚糖及其寡糖对肠道菌群结构和代谢的影响[J]. 食品与发酵工业, 2020, 46(11): 85-91.
[13] 谢勇, 覃小丽, 金剑波, 叶正荣, 易川虎, 刘雄. 来源与加工方式对β-葡聚糖理化特性的影响及其在肠道的降解机理[J]. 食品与发酵工业, 2019, 45(23): 282-294.
[14] 蔡国林, 刘逸凡, 李晓敏, 陆健. 解淀粉芽孢杆菌胞外多糖对乳酸菌生长及代谢的调控作用[J]. 食品与发酵工业, 2019, 45(10): 16-21.
[15] . 高效液相色谱 - 串联质谱法测定多种食品和饲料中的 胶霉毒素[J]. 食品与发酵工业, 2018, 44(4): 259-263.
No Suggested Reading articles found!
Full text



版权所有 © 《食品与发酵工业》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持