Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (8): 197-203    DOI: 10.13995/j.cnki.11-1802/ts.026289
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
高光谱技术结合变量选择方法的甘薯冻害检测研究
许建东1, 张淑娟1*, 郑小南2, 薛建新1, 孙海霞1
1(山西农业大学 农业工程学院,山西 晋中,030801)
2(山西农业大学 软件学院,山西 晋中,030801)
Study on the detection of sweet potato freezing damage based on hyperspectral technology and variable selection method
XU Jiandong1, ZHANG Shujuan1*, ZHENG Xiaonan2, XUE Jianxin1, SUN Haixia1
1(College of Engineering, Shanxi Agricultural University, Jinzhong 030801, China)
2(School of Software, Shanxi Agricultural University, Jinzhong 030801, China)
下载:  HTML   PDF (5150KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为建立一种快速无损鉴别甘薯冻害的检测方法,利用高光谱技术采集900~1 700 nm完好和冻害两类甘薯的高光谱信息并提取样本完好和冻害区域光谱,获得完好和冻害区域光谱343和476个。采用Kennard-Stone算法挑选训练集和预测集中完好和冻害样本。采用4种预处理方法对原始光谱预处理,选出一阶导数(first derivative, FD)为最佳的预处理方法。通过竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、迭代保留信息变量算法(iteratively retains informative variables,IRIV)以及结合连续投影算法(successive projections algorithm,SPA)的CARS-SPA和IRIV-SPA结合算法分别筛选出46、65、24和35个特征波长,并应用偏最小二乘法(partial least squares,PLS)和最小二乘支持向量机(least squares support vector machines,LS-SVM)建立甘薯冻害识别模型。结果表明,高光谱技术可以有效对甘薯冻害进行检测,CARS方法可以有效选择有用波长变量,是优于IRIV、CARS-SPA和IRIV-SPA算法的特征波长提取方法。CARS-PLS模型运算速度快且预测结果最优,其预测集样本的识别正确率、灵敏度及特异性分别为98.05%、98.84%和97.48%。该研究实现了对甘薯冻害特征的识别,为后续甘薯品质在线分选检测研究和在线检测设备的开发奠定了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许建东
张淑娟
郑小南
薛建新
孙海霞
关键词:  高光谱  甘薯  冻害  变量选择  品质检测    
Abstract: Freezing damage is an important factor that causes rot in sweet potatoes.Timely detection and elimination of freezing damage of sweet potato is the key to reducing production losses.To establish a rapid and non-destructive detection method for freezing damage of sweet potato in the early stage, this study established a recognition model for the freezing damage of sweet potato in the early stage based on hyperspectral technology and chemometric methods."Gaia Sorter", a kind of hyperspectral sorter, was used to collect the hyperspectral information of the intact and frost-damaged sweet potato samples in the 900-1 700 nm band, and extract the average spectrum of the intact and frost-damaged regions of the samples to obtain 343 spectra for the intact region and 476 spectra for the frost-damaged region.The Kennard-Stone algorithm was used to select intact and frost-damaged samples in the training set and prediction set.Four preprocessing methods were used to preprocess the original spectra, and the first derivative (FD) was selected as the best preprocessing method.The competitive adaptive reweighted sampling (CARS), iteratively retains informative variables (IRIV), and CARS-SPA and IRIV-SPA combined with successive projections algorithm (SPA) were used to screen out 46, 65, 24 and 35 characteristic wavelength variables related to sweet potato freezing damage.Partial least squares (PLS) and least squares support vector machines (LS-SVM) were used to establish identification models of freezing damage in sweet potato, and it was compared with the recognition model without variable screening.The results showed that hyperspectral technology could effectively detect the freezing damage of sweet potatoes.The CARS method could effectively select useful wavelength variables.It was superior to the IRIV, CARS-SPA and IRIV-SPA algorithms.The CARS-PLS model showed fast calculation speed and the best prediction results.The recognition accuracy, sensitivity and specificity of samples in the prediction set were 98.05%, 98.84% and 97.48%, respectively.This study has achieved the identification of the characteristics of freezing damage in sweet potato, which lays a theoretical foundation for the subsequent research on online sorting and detection and the development of online testing equipment for the sweet potato quality.
Key words:  hyperspectral    sweet potato    freezing damage    variable selection    quality detection
               出版日期:  2021-04-25      发布日期:  2021-05-20      期的出版日期:  2021-04-25
基金资助: 国家自然科学基金项目(31801632)
作者简介:  硕士研究生(张淑娟教授为通讯作者,E-mail:zsujuan1@163.com)
引用本文:    
许建东,张淑娟,郑小南,等. 高光谱技术结合变量选择方法的甘薯冻害检测研究[J]. 食品与发酵工业, 2021, 47(8): 197-203.
XU Jiandong,ZHANG Shujuan,ZHENG Xiaonan,et al. Study on the detection of sweet potato freezing damage based on hyperspectral technology and variable selection method[J]. Food and Fermentation Industries, 2021, 47(8): 197-203.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026289  或          http://sf1970.cnif.cn/CN/Y2021/V47/I8/197
[1] FERNANDEZ A O, PINATTI C A O, PERIS R M, et al.Freeze-damage detection in lemons using electrochemical impedance spectroscopy[J].Sensors, 2019, 19(18):4 051.
[2] KIM H C, JO H N, KIM Y O.Shooting and fruiting characteristics of 'hachiya' persimmon tree affected by sub-zero temperature treatment at early budding stage[J].The Journal of the Convergence on Culture Technology, 2019, 5(4):395-399.
[3] CHARRIER G, CHUINE I, BONHOMME M, et al.Assessing frost damages using dynamic models in walnut trees:Exposure rather than vulnerability controls frost risks[J].Plant, Cell &Environment, 2018, 41(5):1 008-1 021.
[4] 马惠玲, 王若琳, 蔡骋, 等.基于高光谱成像的苹果品种快速鉴别[J].农业机械学报, 2017, 48(4):305-312.MA H L, WANG R L, CAI C, et al.Rapid identification of apple varieties based on hyperspectral imaging[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4):305-312.
[5] 杨福芹, 冯海宽, 李振海, 等.基于可见光-近红外光谱特征参数的苹果叶片氮含量预测[J].农业机械学报, 2017, 48(9):143-151.YANG F Q, FENG H K, LI Z H, et al.Prediction for nitrogen content of apple leaves using spectral features parameters from visible and near infrared lights[J].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9):143-151.
[6] 冯迪, 纪建伟, 张莉, 等.基于高光谱成像提取苹果糖度与硬度最佳波长[J].发光学报, 2017, 38(6):799-806.FENG D, JI J W, ZHANG L, et al.Optimal wavelengths extraction of apple brix and firmness based on hyperspectral imaging[J].Chinese Journal of Luminescence, 2017, 38(6):799-806.
[7] 陈欣欣, 郭辰彤, 张初, 等.高光谱成像技术的库尔勒梨早期损伤可视化检测研究[J].光谱学与光谱分析, 2017, 37(1):150-155.CHEN X X, GUO C T, ZHANG C, et al.Visual detection study on early bruises of korla pear based on hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis, 2017, 37(1):150-155.
[8] 李雄, 刘燕德, 欧阳爱国, 等.酥梨货架期的高光谱成像无损检测模型研究[J].光谱学与光谱分析, 2019, 39(8):2 578-2 583.LI X, LIU Y D, OUYANG A G, et al.Study on non-destructive testing model of hyperspectral imaging for shelf life of crisp pear[J].Spectroscopy and Spectral Analysis, 2019, 39(8):2 578-2 583.
[9] 潘廷跳. 基于光谱和成像技术的香梨黑斑病发病过程监测与快速检测方法研究[D].广州:华南理工大学, 2019.PAN T T.Study on pathogenetic process monitoring and rapid detection methods of pear black spot disease based on spectroscopic and spectral imaging technologies[D].Guangzhou:South China University of Technology, 2019.
[10] 朱晓琳, 李光辉, 张萌.基于CARS-MIV-SVR的库尔勒香梨可溶性固体含量预测方法[J].光谱学与光谱分析, 2019, 39(11):3 547-3 552.ZHU X L, LI G H, ZHANG M, et al.Prediction of soluble solid content of korla pears based on CARS-MIV[J].Spectroscopy and Spectral Analysis, 2019, 39(11):3 547-3 552.
[11] 姜微. 高光谱技术在马铃薯品种鉴别及品质无损检测中的应用研究[D].哈尔滨:东北农业大学, 2017.JIANG W.Study on nondestructive detection of identification varieties and quality potato using hyperspectral technology[D].Harbin:Northeast Agricultural University, 2017.
[12] 吉海彦, 任占奇, 饶震红.基于高光谱成像技术的不同产地小米判别分析[J].光谱学与光谱分析, 2019, 39(7):2 271-2 277.JI H Y, REN Z Q, RAO Z H.Discriminant analysis of millet from different origins based on hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis, 2019, 39(7):2 271-2 277.
[13] 陈李品, 于繁千惠, 陶然, 等.基于高光谱成像技术预测牡蛎干制加工过程中的水分含量[J].中国食品学报, 2020, 20(7):261-268.CHEN L P, YU F Q H, TAO R, et al.Prediction of moisture content in oyster drying process based on hyperspectral imaging[J].Journal of Chinese Institute of Food Science and Technology, 2020, 20(7):261-268.
[14] ZHANG L, SUN H, RAO Z H, et al.Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 229.
[15] WEI C W, HUANG J F, WANG X Z, et al.Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves[J].Remote Sensing of Environment, 2017, 195:56-66.
[16] 史萍, 武永峰, 胡新, 等.晚霜冻影响下冬小麦冠层光谱特征与株高要素变化关系[J].光谱学与光谱分析, 2017, 37(12):3 845-3 850.SHI P, WU Y F, HU X, et al.Relationship between hyperspectral parameters of winter wheat canopy and plant height components under late frost injury[J].Spectroscopy and Spectral Analysis, 2017, 37(12):3 845-3 850.
[17] 孟雷, 武永峰, 胡新, 等.土壤表层湿度影响下冬小麦晚霜冻害及冠层光谱检测[J].光谱学与光谱分析, 2017, 37(5):1 482-1 488.MENG L, WU Y F, HU X, et al.Using hyperspectral data for detecting late frost injury to winter wheat under different topsoil moistures[J].Spectroscopy and Spectral Analysis, 2017, 37(5):1 482-1 488.
[18] 魏传文. 基于多源数据的油菜冻害遥感机理与方法研究[D].杭州:浙江大学, 2018.WEI C W.Remote sensing mechanisms and methods of freezing injury in winter oilseed rape using multi-source data[D].Hangzhou:Zhejiang University, 2018.
[19] POLESELLO A, GIANGIACOMO R.Application of near infrared spectrophotometry to the nondestructive analysis of foods:A review of experimental results[J].Critical Reviews in Food Science and Nutrition, 1983, 18(3):203-230.
[20] 宋华鲁, 闫银发, 宋占华, 等.利用介电参数和变量筛选建立玉米籽粒含水率无损检测模型[J].农业工程学报, 2019, 35(20):262-272.SONG H L, YAN Y F, SONG Z H, et al.Nondestructive testing model for maize grain moisture content established by screening dielectric parameters and variables[J].Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20):262-272.
[21] 章海亮, 楚秉泉, 叶青, 等.高光谱成像技术鉴别鱼新鲜度[J].光谱学与光谱分析, 2018, 38(2):559-563.ZHANG H L, CHU B Q, YE Q, et al.Classification of fishness based on hyperspectra imaging technology[J].Spectroscopy and Spectral Analysis, 2018, 38(2):559-563.
[22] 李冠稳, 高小红, 肖能文, 等.基于sCARS-RF算法的高光谱估算土壤有机质含量[J].发光学报, 2019, 40(8):1 030-1 039.LI G W, GAO X H, XIAO N W, et al.Estimation soil organic matter contents with hyperspectra based on sCARS and RF algorithms[J].Chinese Journal of Luminescence, 2019, 40(8):1 030-1 039.
[23] 于雷, 章涛, 朱亚星, 等.基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值[J].农业工程学报, 2018, 34(16):148-154.YU L, ZHANG T, ZHU Y X, et al.Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16):148-154.
[24] 孙俊, 莫云南, 戴春霞, 等.基于介电特性与IRIV-GWO-SVR算法的番茄叶片含水率检测[J].农业工程学报, 2018, 34(14):188-195.SUN J, MO Y N, DAI C X, et al.Detection of moisture content of tomato leaves based on dielectric properties and IRIV-GWO-SVR algorithm[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14):188-195.
[25] WEI L F, YUAN Z R, YU M, et al.Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy[J].Sensors (Basel, Switzerland), 2019, 19(18):3 904.
[26] 吴宜青, 孙通, 刘津, 等.基于LSSVM和CARS变量优选的食用植物油中铬含量DP-LIBS检测[J].激光与光电子学进展, 2018, 55(1):438-445.WU Y Q, SUN T, LIU J, et al.Detection of chromium content in edible vegetable oil with DP-LIBS combined with LSSVM and CARS methods[J].Laser & Optoelectronics Progress, 2018, 55(1):438-445.
[27] 高升, 王巧华.基于高光谱图像信息融合的红提糖度无损检测[J].发光学报, 2019, 40(12):1 574-1 584.GAO S, WANG Q H.Comprehensive detection of internal quality of red globe grape extract based on near infrared spectroscopy[J].Chinese Journal of Luminescence, 2019, 40(12):1 574-1 584.
[28] 孙通, 莫欣欣, 李晓珍, 等.近红外光谱技术结合变量选择方法定性检测食用植物油中的腐霉利[J].光谱学与光谱分析, 2016, 36(12):3 915-3 919.SUN T, MO X X, LI X Z, et al.Qualitative detection of procymidone in edible vegetable oils by near infrared spectroscopy and variable selection methods[J].Spectroscopy and Spectral Analysis, 2016, 36(12):3 915-3 919.
[29] 许文丽, 药林桃, 孙通, 等.基于CARS-SPA的苹果可溶性固形物可见/近红外光谱在线检测[J].食品工业科技, 2014, 35(22):61-64.XU W L, YAO L T, SUN T, et al.CARS-SPA baesd visble/near infraed spectroscopy on-line detection of apple soluble solids content[J].Science and Technology of Food Industry, 2014, 35(22):61-64.
[30] 李冠稳, 高小红, 肖能文, 等.特征变量选择和回归方法相结合的土壤有机质含量估算[J].光学学报, 2019, 39(9):361-371.LI G W, GAO X H, XIAO N W, et al.Estimation of soil organic matter content based on characteristic variable selection and regression methods[J].Acta Optica Sinica, 2019, 39(9):361-371.
[1] 姜洪喆, 蒋雪松, 杨一, 胡逸磊, 陈青, 施明宏, 周宏平. 肉类掺杂掺假的高光谱成像检测研究进展[J]. 食品与发酵工业, 2021, 47(6): 300-305.
[2] 孙婷, 田建平, 胡新军, 罗惠波, 黄丹, 黄浩平. 基于高光谱成像技术的酿酒高粱品种分类[J]. 食品与发酵工业, 2021, 47(5): 186-192.
[3] 叶建秋, 黄丹平, 田建平, 黄丹, 罗惠波, 张力, 王鑫, 董娜. 基于深度自编码的大曲高光谱数据解混研究[J]. 食品与发酵工业, 2021, 47(4): 96-101.
[4] 段志蓉, 靳苗苗, 吴姗鸿, 代慧, 张敏. 外源乙烯的处理时机对甘薯抑芽及碳水化合物代谢的影响[J]. 食品与发酵工业, 2021, 47(1): 206-213.
[5] 叶建秋, 黄丹平, 田建平, 黄丹, 罗惠波, 王鑫, 张力. 高光谱图像技术检测大曲发酵过程中的水分含量[J]. 食品与发酵工业, 2020, 46(9): 250-254.
[6] 朱敏, 孙婷, 白直真, 罗惠波, 田建平, 黄丹. 基于可见光/近红外高光谱技术的窖泥总酸的分布[J]. 食品与发酵工业, 2020, 46(8): 111-117.
[7] 杨晓月, 郜海燕, 钟迪颖, 张润光, 张有林. 秦薯5号甘薯营养成分测定及贮前低温处理对贮藏品质的影响[J]. 食品与发酵工业, 2020, 46(7): 201-206.
[8] 何欣遥, 靳苗苗, 刘锦, 程圣, 张敏. 外源乙烯对常温物流甘薯的抑芽作用及其品质的影响[J]. 食品与发酵工业, 2020, 46(7): 194-200.
[9] 吴姗鸿, 张洪翠, 代慧, 段志蓉, 张敏. 乙烯与热处理对常温物流甘薯发芽及品质的影响[J]. 食品与发酵工业, 2020, 46(22): 180-186.
[10] 陈嘉, 高丽, 叶发银, 刘嘉, 赵国华. 基于视频与数字图像比色的甘薯多酚氧化酶活力检测[J]. 食品与发酵工业, 2020, 46(2): 246-251.
[11] 程圣, 靳苗苗, 何欣遥, 刘锦, 张敏. 外源乙烯处理对甘薯裂果及细胞壁代谢的影响[J]. 食品与发酵工业, 2020, 46(18): 161-166.
[12] 孙婷, 胡新军, 田建平, 王开铸, 黄丹, 彭兴辉. 基于高光谱成像技术的大曲酸度值预测及其可视化[J]. 食品与发酵工业, 2020, 46(17): 226-231.
[13] 徐茂, 向敏, 王子涵, 蒋和体. 冻结速率对烤甘薯品质的影响[J]. 食品与发酵工业, 2020, 46(13): 217-224.
[14] 张珏, 田海清, 张丽娜, 王轲, 于洋. 高光谱成像技术对羊肉新鲜度的无损检测[J]. 食品与发酵工业, 2020, 46(12): 237-243.
[15] 刘锦, 张洪翠, 程圣, 何欣遥, 张敏. 生姜提取液对常温物流甘薯软腐病的影响及其机制研究[J]. 食品与发酵工业, 2020, 46(12): 57-65.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn