Effect of different treatments on structure and hypoglycemic properties of okara dietary fibers
LI Jing1, WU Congcong1, YE Qin2, TANG Qiwen1, MENG Xianghe1*, NIE Xiaohua1*
1(College of Food Science and Technology,Zhejiang University of Technology,Hangzhou 310014,China) 2(Institute of Food Science,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China)
Abstract: Water-insoluble dietary fiber (WIDF) and acid-alkali insoluble dietary fiber (AAIDF) from okara were treated by superfine grinding and colloid milling respectively in order to explore the changes in their structure and physicochemical properties. Glucose adsorption capacity, glucose dialysis delay index and amylase inhibition were used to characterize their in vitro hypoglycemic properties. The results showed that both superfine grinding and colloid milling could improve the physicochemical properties of WIDF and AAIDF (including water holding capacity, oil holding capacity and swelling capacity) (P<0.05), along with the obvious decreases in size and zeta potential. Scanning electron microscopic images demonstrated that superfine grinding and colloid milling destroyed the structures of these two dietary fibers to different degrees. Moreover, the treatment of superfine grinding and colloid milling, especially the latter, could significantly improve the in vitro hypoglycemic properties of the two dietary fibers. Therefore, colloid milling might be an effective method to improve the functionality of fiber foods, especially hypoglycemic properties. These results provide a theoretical basis for the development and utilization of okara dietary fiber as functional ingredients in diabetic foods.
李菁,吴聪聪,叶沁,等. 不同处理方法对豆渣膳食纤维结构和降血糖性质的影响[J]. 食品与发酵工业, 2021, 47(15): 178-184.
LI Jing,WU Congcong,YE Qin,et al. Effect of different treatments on structure and hypoglycemic properties of okara dietary fibers[J]. Food and Fermentation Industries, 2021, 47(15): 178-184.
佐兆杭,王颖,刘淑婷,等.杂豆膳食纤维对糖尿病大鼠的降血糖作用[J].食品科学,2018,39(17):177-181.ZUO Z H,WANG Y,LIU S T,et al.Hypoglycemic effect of dietary fiber from a mixture of common beans(Phaseolus vulgaris),black soybeans[Glycine max(L.) Merr)] and mungbeans(Vigna radiata L.Wilczek) on diabetic rats[J].Food Science,2018,39(17):177-181.
[2]
LIVESEY G,TAYLOR R,LIVESEY H F,et al.Dietary glycemic index and load and the risk of type 2 diabetes:Assessment of causal relations[J].Nutrients,2019,11(6):1 436.
[3]
SUMMER S S,COUCH S C,SHAH A S,et al.Evaluating a dietary pattern in adolescents with type 1 diabetes mellitus:the dash-d approach[J].Diabetes Management,2019,9(1):28-38.
[4]
方冬冬, 李长乐,师园园,等.豆渣膳食纤维研究与综合利用[J].粮食加工,2018,43(2):62-64.FANG D D,LI C L,SHI Y Y,et al.Research and comprehensive utilization of dietary fiber[J].Grain Processing,2018,43(2):62-64.
[5]
李伟伟, 周才琼.豆渣膳食纤维的改性研究进展[J].食品工业科技,2018,39(19):333-338.LI W W,ZHOU C Q.Research progress of modification of dietary fiber from soybean residue[J].Science and Technology of Food Industry,2018,39(19):333-338.
[6]
VONG W C,LIU S Q.Biovalorisation of okara (soybean residue) for food and nutrition[J].Trends in Food Science & Technology,2016,52:139-147.
[7]
梁志宏, 尹蓉,张倩茹,等.提取方式对枣膳食纤维理化及功能特性的影响[J].食品与发酵工业,2019,45(19):132-137.LIANG Z H,YIN R,ZHANG Q R,et al.Effects of extraction methods on physiochemical and functional properties of dietary fiber in jujube[J].Food and Fermentation Industries,2019,45(19):132-137.
[8]
祁静. 高吸附性米糠纤维的制备及其吸附特性的研究[D].无锡:江南大学,2016.QI J.The research on the preparation and adsorption properties of rice bran fiber with high adsorption capacities[D].Wuxi:Jiangnan University,2016.
[9]
CHEN J L,GAO D X,YANG L T,et al.Effect of microfluidization process on the functional properties of insoluble dietary fiber[J].Food Research International,2013,54(2):1 821-1 827.
[10]
HUANG Y L,MA Y S,TSAI Y H,et al.In vitro hypoglycemic,cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion[J].International Journal of Biological Macromolecules,2019,124:796-801.
[11]
吕秉霖, 袁尔东.膳食纤维的改性及应用[J].粮食科技与经济,2019,44(3):78-81.LV B L,YUAN E D.Modification and application of dietary fiber[J].Grain Science and Technology and Economy,2019,44(3):78-81.
[12]
CHAU C F,WANG Y T,WEN Y L.Different micronization methods significantly improve the functionality of carrot insoluble fibre[J].Food Chemistry,2007,100(4):1 402-1 408.
[13]
邵家威, 郝征红,岳凤丽,等.振动式超微粉碎处理时间对白毛木耳多糖提取率及体外抗氧化性质的影响[J].中国食物与营养,2019,25(3):34-38.SHAO J W,HAO Z H,YUE F L,et al.Effect of vibration ultrafine grinding time on extraction rate and antioxidant properties of Auricularia polytricha polysaccharide in vitro[J].Food and Nutrition in China,2019,25(3):34-38.
[14]
余青, 陈嘉浩,王寅竹,等.超微粉碎处理对麦麸粉功能及结构特性的影响[J].粮食科技与经济,2020,45(2):56-62;81.YU Q,CHEN J H,WANG Y Z,et al.Effect of superfine grinding on functional and structural properties of wheat bran[J].Grain Science and Technology and Economy,2020,45(2):56-62;81.
[15]
吴海玉, 龚林玲,杨万根.猕猴桃皮膳食纤维胶体磨湿法改性工艺优化[J].食品与机械,2020,36(5):182-186;193.WU H Y,GONG L L,YANG W G.Optimization of modifying kiwifruit peel dietary fiber with a colloid mill[J].Food & Machinery,2020,36(5):182-186;193.
[16]
ULLAH I,YIN T,XIONG S B,et al.Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling[J].LWT,2017,82:15-22.
[17]
汤小明. 豆渣膳食纤维的制备及其改性研究[D].南昌:南昌大学,2015.TANG X M.Preparation and modification of okara dietary fiber[D].Nanchang:Nanchang University,2015.
[18]
ZHANG M,BAI X,ZHANG Z S.Extrusion process improves the functionality of soluble dietary fiber in oat bran[J].Journal of Cereal Science,2011,54(1):98-103.
[19]
WANG L,XU H G,YUAN F,et al.Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking[J].Food Chemistry,2015,185:90-98.
[20]
QI J,LI Y,MASAMBA K G,et al.The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber[J].Food Hydrocolloids,2016,52:699-706.
[21]
MILLER G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical Chemistry,1959,31(3):426-428.
[22]
OU S Y,KWOK K C,LI Y,et al.In vitro study of possible role of dietary fiber in lowering postprandial serum glucose[J].Journal of Agricultural and Food Chemistry,2001,49(2):1 026-1 029.
[23]
MA M M,MU T H.Effects of extraction methods and particle size distribution on the structural,physicochemical,and functional properties of dietary fiber from deoiled cumin[J].Food Chemistry,2016,194:237-246.
[24]
林丽静, 黄晓兵,龚霄,等.超微粉碎对菠萝皮渣理化特性的影响[J].农产品加工,2016,22:19-21;24.LIN L J,HUANG X B,GONG X,et al.Influence of micronization on the physicochemical properties of pineapple peel[J].Farm Product Processing,2016,22:19-21;24.
[25]
陈致印, 刘伟鹏,王盈希,等.三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J].食品与发酵工业,2021,47(2):57-62;69.CHEN Z Y,LIU W P,WANG Y X,et al.Study on modification effect of three different modification methods on insoluble dietary fiber in sweet potato residue[J].Food and Fermentation Industries,2021,47(2):57-62;69.
[26]
HUANG J Y,LIAO J S,QI J R,et al.Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel[J].Food Hydrocolloids,2021,110:106 140.
[27]
叶秋萍, 曾新萍,郑晓倩.膳食纤维的制备技术及理化性能的研究进展[J].食品研究与开发,2019,49(17):212-217.YE Q P,ZENG X P,ZHENG X Q.Research progress on preparation technology and physicochemical properties of dietary fiber[J].Food Research and Development,2019,49(17):212-217.
[28]
何晓琴, 李苇舟,夏晓霞,等.蒸汽爆破预处理的苦荞麸皮不溶性膳食纤维理化特性及结构研究[J].食品与发酵工业,2020,46(18):47-53.HE X Q,LI W Z,XIA X X,et al.Study on physicochemical properties and structure of insoluble dietary fiber from Tartary buckwheat bran pretreated by steam explosion[J].Food and Fermentation Industries,2020,46(18):47-53.
[29]
马梦梅. 孜然膳食纤维改性及降血糖活性研究[D].北京:中国农业科学院,2016.MA M M.Study on modification and anti-hypoglycemic activity of deoiled cumin dietary fiber[D].Beijing:Chinese Academy of Agricultural Sciences,2016.
[30]
ZHENG Y J,LI Y.Physicochemical and functional properties of coconut (Cocos nucifera L) cake dietary fibres:Effects of cellulase hydrolysis,acid treatment and particle size distribution[J].Food Chemistry,2018,257:135-142.