Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (21): 109-114    DOI: 10.13995/j.cnki.11-1802/ts.026566
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
银杏肽对急性酒精性肝损伤小鼠的保护作用
郑义1,2*, 李诗颖1, 糜心怡1, 陈琳1, 李闯1, 梁一凡1
1(徐州工程学院 食品与生物工程学院,江苏 徐州,221018)
2(江苏省食品资源开发与质量安全重点建设实验室,江苏 徐州,221018)
Protective effect of Ginkgo biloba peptides on acute alcoholic liver injury in mice
ZHENG Yi1,2*, LI Shiying1, MI Xinyi1, CHEN Lin1, LI Chuang1, LIANG Yifan1
1(School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, China)
2(Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou 221018, China)
下载:  HTML  PDF (4025KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 摄入生物活性肽,可缓解酒精代谢诱导的氧化应激和炎性损伤,因此被认为是一种有效的辅助治疗急性酒精性肝损伤的策略。基于急性酒精性肝损伤小鼠模型考察了银杏肽(Ginkgo biloba peptides, GBP)的肝保护作用。将雄性昆明小鼠随机分为正常组、模型组、GBP低剂量(50 mg/kg)、GBP中剂量(100 mg/kg)、GBP高剂量组(200 mg/kg)和阳性对照组(100 mg/kg还原型谷胱甘肽),通过灌胃酒精建立急性酒精性肝损伤小鼠模型,测定小鼠血清丙氨酸氨基转移酶(alanine aminotransferase, ALT)、天冬氨酸氨基转移酶(aspartate aminotransferase, AST)、甘油三酯(triglyceride, TG)、总胆固醇(total cholesterol, TC)、IL-1β、IL-6和TNF-α水平,肝脏过氧化氢酶(catalase, CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)和总超氧化物歧化酶(total superoxide dismutase, T-SOD)活性,肝脏丙二醛(malondialdehyde, MDA)和蛋白质羰基(protein carbonyl group, PCG)水平。结果表明,GBP能降低酒精性肝损伤小鼠血清中ALT、AST、TG和TC水平,抑制促炎细胞因子IL-1β、IL-6和TNF-α水平,提高肝脏CAT、GSH-Px和T-SOD活性,降低肝脏MDA和PCG水平。GBP通过抗氧化和抗炎途径发挥其对酒精性肝损伤小鼠的保护作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑义
李诗颖
糜心怡
陈琳
李闯
梁一凡
关键词:  银杏肽  急性酒精性肝损伤  肝保护  抗氧化  抗炎    
Abstract: Intake of bioactive peptides has been proposed as an effective adjuvant therapy for acute alcoholic liver injury by ameliorating alcohol-induced oxidative stress and inflammatory damage. This paper investigated the hepatoprotective effect of Ginkgo biloba peptides (GBP) on acute alcoholic liver injury in mice. Male Kunming mice were randomly divided into six groups, including normal group, model group, GBP low-dose (50 mg/kg), GBP medium-dose (100 mg/kg), GBP high-dose group (200 mg/kg) and positive control group (100 mg/kg reduced glutathione). An acute alcoholic liver injury mice mode was established by ethanol exposure. The kits were employed to determine the levels of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α). And the levels of the liver tissue catalase (CAT), glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), malondialdehyde (MDA) and protein carbonyl group (PCG). The results showed that GBP treatment reduced the levels of ALT, AST, TG and TC, down-regulated the levels of pro-inflammatory cytokines including IL-1β, IL-6 and TNF-α. Besides, GBP treatment also increased the CAT, GSH-Px and T-SOD activities and decreased MDA and PCG levels. The results indicated that GBP exerted the hepatoprotective effect on acute alcoholic liver injury in mice through antioxidant and anti-inflammatory pathways.
Key words:  Ginkgo biloba peptides    acute alcoholic liver injury    hepatoprotective    antioxidant    anti-inflammatory
收稿日期:  2020-12-26      修回日期:  2021-06-24           出版日期:  2021-11-15      发布日期:  2021-11-30      期的出版日期:  2021-11-15
基金资助: 徐州市科技项目重点研发计划(KC19122)
作者简介:  副教授(通讯作者,E-mail:biozheng@gmail.com)
引用本文:    
郑义,李诗颖,糜心怡,等. 银杏肽对急性酒精性肝损伤小鼠的保护作用[J]. 食品与发酵工业, 2021, 47(21): 109-114.
ZHENG Yi,LI Shiying,MI Xinyi,et al. Protective effect of Ginkgo biloba peptides on acute alcoholic liver injury in mice[J]. Food and Fermentation Industries, 2021, 47(21): 109-114.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026566  或          http://sf1970.cnif.cn/CN/Y2021/V47/I21/109
[1] SÁNCHEZ A,VÁZQUEZ A.Bioactive peptides:A review[J].Food Quality and Safety,2017,1(1):29-46.
[2] LORENZO J M,MUNEKATA P E S,GÓMEZ B,et al.Bioactive peptides as natural antioxidants in food products-A review[J].Trends in Food Science & Technology,2018,79:136-147.
[3] CICERO A F G,FOGACCI F,COLLETTI A.Potential role of bioactive peptides in prevention and treatment of chronic diseases:A narrative review[J].British Journal of Pharmacology,2017,174(11):1 378-1 394.
[4] KORHONEN H,PIHLANTO A.Bioactive peptides:Production and functionality[J].International Dairy Journal,2006,16(9):945-960.
[5] MAZORRA-MANZANO M A,RAMíREZ-SUAREZ J C,YADA R Y.Plant proteases for bioactive peptides release:A review[J].Critical Reviews in Food Science and Nutrition,2018,58(13): 2 147-2 163.
[6] 杨月欣. 中国食物成分表:第一册[M].第6版.北京:北京大学医学出版社,2018.
YANG Y X.China Food Composition:Book 1[M].6th Edition.Beijing:Peking University Medical Press,2018.
[7] 黄文. 白果活性蛋白的分离、纯化、结构及其生物活性研究[D].武汉:华中农业大学,2002.
HUANG W.Studies on separation purification and structure of Ginkgo seed protein and its biologic activities[D].Wuhan:Huazhong Agricultural University,2002.
[8] HUANG W,DENG Q C,XIE B J,et al.Purification and characterization of an antioxidant protein from Ginkgo biloba seeds[J].Food Research International,2010,43(1):86-94.
[9] 邓乾春, 汪兰,吴佳,等.一种白果清蛋白的抗衰老活性研究[J].中国药理学通报,2006,22(3):352-357.
DENG Q C,WANG L,WU J,et al.Studies on anti-aging activity of Ginkgo Albumin Protein (GAP)[J].Chinese Pharmacological Bulletin,2006,22(3):352-357.
[10] GAO N N,WADHWANI P,MÜHLHÄUSER P,et al.An antifungal protein from Ginkgo biloba binds actin and can trigger cell death[J].Protoplasma,2016,253(4):1 159-1 174.
[11] 邓乾春, 段会轲,谢笔钧,等.白果清蛋白对免疫功能低下小鼠的调节作用[J].食品科学,2006,27(6):195-199.
DENG Q C,DUAN H K,XIE B J,et al.Regulating function of Ginkgo Albumin Protein (GAP) on immunosuppressive model in mice[J].Food Science,2006,27(6):195-199.
[12] 邓乾春, 黄文,谢笔钧.白果清蛋白抑制肿瘤活性及其机制的初步研究[J].营养学报,2006,28(3):259-262.
DENG Q C,HUANG W,XIE B J.The preliminary studies on anti-tumor activity of ginkgo albumin and its mechanism[J].Acta Nutrimenta Sinica,2006,28(3):259-262.
[13] 贾韶千, 吴彩娥,范龚健,等.双酶法制备银杏抗氧化肽工艺研究[J].食品科学,2011,32(21):201-206.
JIA S Q,WU C E,FAN G J,et al.Preparation of antioxidant peptides derived from Ginkgo biloba kernel by dual-enzymatic method[J].Food Science,2011,32(21):201-206.
[14] 张焕新, 臧大存,刘靖,等.银杏肽的抗氧化性研究[J].食品研究与开发,2008,29(12):27-29.
ZHANG H X,ZANG D C,LIU J,et al.Antioxidant activity of Ginkgo peptides[J].Food Research and Development,2008,29(12):27-29.
[15] 张灿, 吴彩娥,范龚健,等.酶解银杏蛋白制备α-葡萄糖苷酶抑制肽的研究[J].食品与机械,2016,32(11):137-141.
ZHANG C,WU C E,FAN G J,et al.Preparation of α-glucosidase inhibitory peptides derived from Ginkgo biloba by enzymatic method[J].Food & Machinery,2016,32(11):137-141.
[16] MA F F,WANG H,WEI C K,et al.Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds:Purification,inhibitory kinetic and mechanism[J].Frontiers in Pharmacology,2019,9:1 579.
[17] MASARONE M,ROSATO V,DALLIO M,et al.Epidemiology and natural history of alcoholic liver disease[J].Reviews on Recent Clinical Trials,2016,11(3):167-174.
[18] WANG W J,XIAO P,XU H Q,et al.Growing burden of alcoholic liver disease in China:A review[J].World Journal of Gastroenterology,2019,25(12):1 445-1 456.
[19] WANG H J,GAO B,ZAKHARI S,et al.Inflammation in alcoholic liver disease[J].Annual Review of Nutrition,2012,32(1):343-368.
[20] ALBANO E.Oxidative mechanisms in the pathogenesis of alcoholic liver disease[J].Molecular Aspects of Medicine,2008,29(1):9-16.
[21] MA Z L,HOU T,SHI W,et al.Inhibition of hepatocyte apoptosis:An important mechanism of corn peptides attenuating liver injury induced by ethanol[J].International Journal of Molecular Sciences,2015,16(9):22 062-22 080.
[22] WU Y H,PAN X C,ZHANG S X,et al.Protective effect of corn peptides against alcoholic liver injury in men with chronic alcohol consumption:A randomized double-blind placebo-controlled study[J].Lipids in Health and Disease,2014,13:192.
[23] LIN B,ZHANG F,YU Y C,et al.Marine collagen peptides protect against early alcoholic liver injury in rats[J].The British Journal of Nutrition,2012,107(8):1 160-1 166.
[24] 刘睿, 珠娜,刘欣然,等.核桃低聚肽对急性酒精性肝损伤大鼠保护作用[J].中国公共卫生,2020,36(2):192-195.
LIU R,ZHU N,LIU X R,et al.Protective effect of walnut oligopeptides on acute alcohol-induced liver injury in rats[J].Chinese Journal of Public Health,2020,36(2):192-195.
[25] WEI C K,THAKUR K,LIU D H,et al.Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products[J].Food Chemistry,2018,263:186-193.
[26] SONG X L,LIU Z H,ZHANG J J,et al.Antioxidative and hepatoprotective effects of enzymatic and acidic-hydrolysis of Pleurotus geesteranus mycelium polysaccharides on alcoholic liver diseases[J].Carbohydrate Polymers,2018,201:75-86.
[27] WANG M C,ZHU P L,JIANG C X,et al.Preliminary characterization,antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis[J].Food and Chemical Toxicology,2012,50(9):2 964-2 970.
[28] ZHENG Y,CUI J,CHEN A H,et al.Optimization of ultrasonic-microwave assisted extraction and hepatoprotective activities of polysaccharides from Trametes orientalis[J].Molecules,2019,24(1):147.
[29] ZHOU C Y,LAI Y L,HUANG P,et al.Naringin attenuates alcoholic liver injury by reducing lipid accumulation and oxidative stress[J].Life Sciences,2019,216:305-312.
[30] ZAKHARI S.Overview:How is alcohol metabolized by the body?[J].Alcohol Research & Health,2006,29(4):245-254.
[31] CEDERBAUM A I.Alcohol metabolism[J].Clinics in Liver Disease,2012,16(4):667-685.
[32] TESCHKE R.Alcoholic liver disease:Alcohol metabolism,cascade of molecular mechanisms,cellular targets,and clinical aspects[J].Biomedicines,2018,6(4):106.
[33] OSNA N A,DONOHUE T M,KHARBANDA K K.Alcoholic liver disease:Pathogenesis and current management[J].Alcohol Research,2017,38(2):147-161.
[34] LAI Y L,ZHOU C Y,HUANG P,et al.Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress[J].Journal of Pharmacological Sciences,2018,138(1):46-53.
[35] AN L,WANG X D,CEDERBAUM A I.Cytokines in alcoholic liver disease[J].Archives of Toxicology,2012,86(9):1 337-1 348.
[36] GAO B.Hepatoprotective and anti-inflammatory cytokines in alcoholic liver disease[J].Journal of Gastroenterology and Hepatology,2012,27:89-93.
[37] CICHOŻ-LACH H,MICHALAK A.Oxidative stress as a crucial factor in liver diseases[J].World Journal of Gastroenterology,2014,20(25):8 082-8 091.
[38] LI S,TAN H Y,WANG N,et al.The role of oxidative stress and antioxidants in liver diseases[J].International Journal of Molecular Sciences,2015,16(11):26 087-26 124.
[39] DALLE-DONNE I,ROSSI R,GIUSTARINI D,et al.Protein carbonyl groups as biomarkers of oxidative stress[J].Clinica Chimica Acta,2003,329(1-2):23-38.
[40] TUMA D J.Role of malondialdehyde-acetaldehyde adducts in liver injury[J].Free Radical Biology and Medicine,2002,32(4):303-308.
[1] 张涛, 邓思, 陈艳红, 杜希萍. 虾青素和β-胡萝卜素的抗氧化活性及其协同作用研究[J]. 食品与发酵工业, 2021, 47(9): 8-15.
[2] 冯艳钰, 臧延青. 三种小麦麸皮总黄酮的体外抗氧化活性[J]. 食品与发酵工业, 2021, 47(9): 16-24.
[3] 刘晓晨, 杨光, 杨波, 周盛敏. 光照萌发对亚麻籽油中脂质伴随物含量的影响[J]. 食品与发酵工业, 2021, 47(9): 208-214.
[4] 余祥英, 陈晓纯, 李玉婷, 李琳. 陈皮挥发油组成分析及其单体的抗氧化性研究[J]. 食品与发酵工业, 2021, 47(9): 245-252.
[5] 曹联飞, 何程豪, 孙玉敬. 大蜜蜂和黑大蜜蜂蜂蜜的理化指标及抗氧化活性分析[J]. 食品与发酵工业, 2021, 47(9): 262-267.
[6] 王春幸, 张东, 贺稚非, 李芳, 陈茹, 李洪军. 天然保鲜剂的作用机理及其在调理肉制品中的应用研究进展[J]. 食品与发酵工业, 2021, 47(9): 328-334.
[7] 牛娜娜, 沙如意, 杨陈铭, 王珍珍, 茹语婷, 戴静, 韩洪庚, 张黎明, 毛建卫. 预处理工艺对黑蒜功能性成分、抗氧化活性影响及相关性研究[J]. 食品与发酵工业, 2021, 47(8): 67-75.
[8] 郭佳, 李云飞, 李诗佳, 关红霞, 陈晓光. 酸浆宿萼抗衰老作用及机理研究[J]. 食品与发酵工业, 2021, 47(8): 140-144.
[9] 孟洋, 卢红梅, 杨双全, 章之柱, 陈莉, 刘兵, 王利萍. 铁皮石斛复配花茶制作工艺及其功能性研究[J]. 食品与发酵工业, 2021, 47(8): 170-179.
[10] 王子涵, 向敏, 徐茂, 蒋和体. 响应面优化黑果腺肋花楸汁澄清工艺及其抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(8): 189-196.
[11] 姚丽文, 周宇芳, 孙继鹏, 王家星, 廖妙飞, 郑斌, 王芮, 邓尚贵, 相兴伟. 厚壳贻贝多糖对葡聚糖硫酸钠诱导的结肠炎改善作用[J]. 食品与发酵工业, 2021, 47(7): 109-115.
[12] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[13] 陈思雨, 梁鑫, 雷钰, 孔倩倩, 万欣, 张宝善. 豆腐黄浆水发酵阶段产物抗氧化成分和色泽变化[J]. 食品与发酵工业, 2021, 47(6): 34-41.
[14] 赵昊, 宋晶晶, 于佳俊, 张晓蒙, 张凤杰, 李涛, 武运, 薛洁. 不同产区葡萄酒多酚物质抗氧化活性差异及相关性分析[J]. 食品与发酵工业, 2021, 47(6): 84-91.
[15] 李江阔, 高静, 张鹏, 霍俊伟. 微环境气调对蓝果忍冬贮藏品质和抗氧化酶的影响[J]. 食品与发酵工业, 2021, 47(6): 152-159.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn