Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (17): 1-7    DOI: 10.13995/j.cnki.11-1802/ts.026802
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
代谢工程改造大肠杆菌生产L-丝氨酸
李旋1, 王加初1, 刘益宁1, 蒋帅1, 吴鹤云2, 谢希贤1,3*
1(天津科技大学 生物工程学院,天津,300457)
2(天津科技大学 食品科学与工程学院,天津,300457)
3(代谢控制发酵技术国家地方联合工程实验室,天津,300457)
Production of L-serine by metabolically engineered Escherichia coli
LI Xuan1, WANG Jiachu1, LIU Yining1, JIANG Shuai1, WU Heyun2, XIE Xixian1,3*
1(College of Biotechnology,Tianjin University of Science and Technology,Tianjin 300457,China)
2(College of Food Science and Engineering,Tianjin University of Science and Technology,Tianjin 300457,China)
3(National and Local United Engineering Lab of Metabolic Control Fermentation Technology,Tianjin 300457,China)
下载:  HTML  PDF (2330KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 L-丝氨酸是一种具有重要生理学功能的中性氨基酸,广泛应用在食品、化妆品和医药等领域。为构建L-丝氨酸的生产菌株,对Escherichia coli MG1655进行了系统的代谢工程改造。采用的方法策略包括减弱L-丝氨酸的降解,增强L-丝氨酸合成酶类的表达以及转运系统的改造。特别是利用启动子Ptrp调控丝氨酸羟甲基转移酶的表达,减弱了L-丝氨酸向甘氨酸的降解途径,显著增强了L-丝氨酸的合成。最终所得菌株SER09摇瓶发酵24 h,L-丝氨酸产量可达13.53 g/L;在5 L发酵罐上发酵28 h,L-丝氨酸产量达到22.31 g/L。该研究从头构建了1株产L-丝氨酸的平台菌株,具有较好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李旋
王加初
刘益宁
蒋帅
吴鹤云
谢希贤
关键词:  大肠杆菌  L-丝氨酸  CRISPR/Cas9  代谢工程  表达调控    
Abstract: L-Serine is a neutral amino acid with important physiological functions widely used in food, cosmetics, and medicine industries. Escherichia coli MG1655 was systematically modified by reducing the degradation of L-serine and enhancing the expression synthetases and trans-system to produce L-serine. In particular, Ptrp was used to regulate the expression of serine hydroxymethyl transferase to decrease the degradation pathway of L-serine to glycine. The synthesis of L-serine significantly enhanced. The obtained strain SER09 produced 13.53 g/L of L-serine by shake-flask fermentation after 24 hand 22.31 g/L L-serine in a 5 L fermenter for 28 h. A platform strain producing L-serine was constructed, which has a good application prospect.
Key words:  Escherichia coli    L-serine    CRISPR/Cas9    metabolic engineering    expression regulation
收稿日期:  2021-01-19      修回日期:  2021-03-22                发布日期:  2021-09-27      期的出版日期:  2021-09-15
基金资助: 国家重点研发计划项目(2018YFA0900300)
作者简介:  硕士研究生(谢希贤教授为通讯作者,E-mail: xixianxie@tust.edu.cn)
引用本文:    
李旋,王加初,刘益宁,等. 代谢工程改造大肠杆菌生产L-丝氨酸[J]. 食品与发酵工业, 2021, 47(17): 1-7.
LI Xuan,WANG Jiachu,LIU Yining,et al. Production of L-serine by metabolically engineered Escherichia coli[J]. Food and Fermentation Industries, 2021, 47(17): 1-7.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026802  或          http://sf1970.cnif.cn/CN/Y2021/V47/I17/1
[1] RENNIG M,MUNDHADA H,WORDOFA G G,et al.Industrializing a bacterial strain for L-serine production through translation initiation optimization[J].ACS Synthetic Biology,2019,8(10):2 347-2 358.
[2] ZHANG X,NEWMAN E.Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12[J].Molecular Microbiology,2008,69(4):870-881.
[3] DE LORENZO V,SEKOWSKA A,DANCHIN A.Chemical reactivity drives spatiotemporal organisation of bacterial metabolism[J].FEMS Microbiology Reviews,2015,39(1):96-119.
[4] BELL J K,PEASE P J,BELL J E,et al.De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal[J].European Journal of Biochemistry,2002,269(17):4 176-4 184.
[5] ZHU Q J,ZHANG X M,LUO Y C,et al.L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology,2015,99(4):1 665-1 673.
[6] STOLZ M,PETERS-WENDISCH P,ETTERICH H,et al.Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum[J].Applied and Environmental Microbiology,2007,73(3):750-755.
[7] MUNDHADA H,SEOANE J M,SCHNEIDER K,et al.Increased production of L-serine in Escherichia coli through adaptive laboratory evolution[J].Metabolic Engineering,2017,39:141-150.
[8] ZHANG X M,GAO Y J,CHEN Z W,et al.High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum[J].Microbial Cell Factories,2020,19(1):115.
[9] LI Y F,LIN Z Q,HUANG C,et al.Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing[J].Metabolic Engineering,2015,31:13-21.
[10] CHAI D F,WANG G,FANG L,et al.The optimization system for preparation of TG1 competent cells and electrotransformation[J].MicrobiologyOpen,2020,9(7).DOI:10.1002/mbo3.1043.
[11] 张苏平, 邱伟强,卢祺,等.全自动氨基酸分析仪法测定4种贝类肌肉中谷胱甘肽和游离氨基酸含量[J].食品科学,2017,38(4):170-176.
ZHANG S P,QIU W Q,LU Q,et al.Determination of glutathione and free amino acids in muscles of four shellfish species by automatic amino acid analyzer[J].Food Science,2017,38(4):170-176.
[12] TRAN K N T,EOM G T,HONG S H.Improving L-serine production in Escherichia coli via synthetic protein scaffold of SerB,SerC,and EamA[J].Biochemical Engineering Journal,2019,148:138-142.
[13] ZHANG X M,XU G Q,SHI J S,et al.Microbial production of L-serine from renewable feedstocks[J].Trends in Biotechnology,2018,36(7):700-712.
[14] XU G Q,ZHU Q J,LUO Y C,et al.Enhanced production of L-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose[J].Biochemical Engineering Journal,2015,103:60-67.
[15] LI T,YE J W,SHEN R,et al.Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J].ACS Synthetic Biology,2016,5(11):1 308-1 317.
[16] XU Y R,LIU Y F,LI F R,et al.Identification of a new gene yecC involved in threonine export in Escherichia coli[J].FEMS Microbiology Letters,2017,364(17).DOI:10.1093/femsle/tnx174.
[17] MUNDHADA H,SCHNEIDER K,CHRISTENSEN H B,et al.Engineering of high yield production of L-serine in Escherichia coli[J].Biotechnology and Bioengineering,2016,113(4):807-816.
[18] 崔云风, 石斌超,李晶,等.大肠杆菌丝氨酸转运系统单基因敲除对丝氨酸生产的影响[J].食品工业科技,2016,37(14):191-195.
CUI Y F,SHI B C,LI J,et al.Effect of single-gene knockout of L-serine transport system on L-serine production in Escherichia coli[J]. Science and Technology of Food Industry,2016,37(14):191-195.
[19] JONES C M,HERNÁNDEZ LOZADA N J,PFLEGER B F.Efflux systems in bacteria and their metabolic engineering applications[J].Applied Microbiology and Biotechnology,2015,99(22):9 381-9 393.
[20] ZHANG Y,SHANG X L,LAI S J,et al.Reprogramming one-carbon metabolic pathways to decouple l-serine catabolism from cell growth in Corynebacterium glutamicum[J].ACS Synthetic Biology,2018,7(2):635-646.
[21] XU D,FANG M J,WANG H J,et al.Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway[J].Applied Microbiology and Biotechnology,2020,104(6):2 481-2 488.
[22] ESPINOSA M I,GONZALEZ-GARCIA R A,VALGEPEA K,et al.Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae[J].Nature Communications,2020,11(1):5 564.
[23] WANG Y Z,MANOW R,FINAN C,et al.Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose[J].Journal of Industrial Microbiology & Biotechnology,2011,38(9):1 371-1 377.
[1] 解天慧, 石慧. 大肠杆菌O157∶H7噬菌体EC-p9的内溶酶和穿孔素的特性预测及克隆表达[J]. 食品与发酵工业, 2021, 47(9): 107-113.
[2] 李晨晨, 李梦丽, 江波, 张涛. 2'-岩藻糖基乳糖的生物合成菌株构建及发酵条件研究[J]. 食品与发酵工业, 2021, 47(3): 10-17.
[3] 郭峰, 董明辉, 高梦园, 舒方, 孙冬冬, 汪维云. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究[J]. 食品与发酵工业, 2021, 47(2): 109-113.
[4] 冯静茹, 于立雪, 田康明, 牛丹丹, 王正祥. 大肠杆菌D-乳酸脱氢酶(FAD)的分子克隆与酶学性质[J]. 食品与发酵工业, 2021, 47(17): 22-26.
[5] 李杰, 田俊宇, 季圆清, 元跃, 徐庆阳, 陈宁, 范晓光. 代谢组学分析甜菜碱对大肠杆菌合成苏氨酸的影响[J]. 食品与发酵工业, 2021, 47(17): 34-40.
[6] 刘慧, 陈胜玲, 徐建中, 张伟国. α-法尼烯在巴斯德毕赤酵母中的生物合成[J]. 食品与发酵工业, 2021, 47(16): 9-14.
[7] 朱灵桓, 徐沙, 李由然, 张梁, 石贵阳. 微生物法从头合成2-苯乙醇的研究进展[J]. 食品与发酵工业, 2021, 47(16): 271-277.
[8] 马巍, 邹祥. 发酵法生产L-岩藻糖的研究进展[J]. 食品与发酵工业, 2021, 47(16): 308-312.
[9] 诸亚锋, 徐铮. 来源于Dictyoglomus sp.NZ13-RE01的纤维二糖差向异构酶酶学性质和乳果糖制备研究[J]. 食品与发酵工业, 2021, 47(13): 9-15.
[10] 李梦莹, 吕雪芹, 刘延峰, 李江华, 堵国成, 吴剑荣, 刘龙. 代谢工程改造大肠杆菌合成L-组氨酸[J]. 食品与发酵工业, 2021, 47(12): 1-9.
[11] 刘益宁, 秦臻, 李旋, 蒋帅, 吴鹤云, 谢希贤. 胞苷合成途径改造对大肠杆菌嘧啶核苷发酵的影响[J]. 食品与发酵工业, 2021, 47(12): 10-16.
[12] 易昌毓, 罗自生, 潘响亮, 林星宇. 基于数字化环介导等温扩增技术的牛乳中大肠杆菌快速精准定量分析[J]. 食品与发酵工业, 2021, 47(11): 241-246.
[13] 桑昆昆, 刘晓凤, 熊智强, 张汇, 王光强, 宋馨, 艾连中, 夏永军. 透明质酸分子质量调控进展[J]. 食品与发酵工业, 2021, 47(11): 272-278.
[14] 曾伟主, 单小玉, 房峻, 周景文. 微液滴适应性进化强化大肠杆菌耐受高浓度L-山梨糖[J]. 食品与发酵工业, 2021, 47(1): 1-7.
[15] 曲丽莎, 于文文, 吕雪芹, 李江华, 堵国成, 刘龙. 生物-化学法合成维生素D的研究进展[J]. 食品与发酵工业, 2021, 47(1): 276-284.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn