Production of L-serine by metabolically engineered Escherichia coli
LI Xuan1, WANG Jiachu1, LIU Yining1, JIANG Shuai1, WU Heyun2, XIE Xixian1,3*
1(College of Biotechnology,Tianjin University of Science and Technology,Tianjin 300457,China) 2(College of Food Science and Engineering,Tianjin University of Science and Technology,Tianjin 300457,China) 3(National and Local United Engineering Lab of Metabolic Control Fermentation Technology,Tianjin 300457,China)
Abstract: L-Serine is a neutral amino acid with important physiological functions widely used in food, cosmetics, and medicine industries. Escherichia coli MG1655 was systematically modified by reducing the degradation of L-serine and enhancing the expression synthetases and trans-system to produce L-serine. In particular, Ptrp was used to regulate the expression of serine hydroxymethyl transferase to decrease the degradation pathway of L-serine to glycine. The synthesis of L-serine significantly enhanced. The obtained strain SER09 produced 13.53 g/L of L-serine by shake-flask fermentation after 24 hand 22.31 g/L L-serine in a 5 L fermenter for 28 h. A platform strain producing L-serine was constructed, which has a good application prospect.
[1] RENNIG M,MUNDHADA H,WORDOFA G G,et al.Industrializing a bacterial strain for L-serine production through translation initiation optimization[J].ACS Synthetic Biology,2019,8(10):2 347-2 358. [2] ZHANG X,NEWMAN E.Deficiency in L-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12[J].Molecular Microbiology,2008,69(4):870-881. [3] DE LORENZO V,SEKOWSKA A,DANCHIN A.Chemical reactivity drives spatiotemporal organisation of bacterial metabolism[J].FEMS Microbiology Reviews,2015,39(1):96-119. [4] BELL J K,PEASE P J,BELL J E,et al.De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal[J].European Journal of Biochemistry,2002,269(17):4 176-4 184. [5] ZHU Q J,ZHANG X M,LUO Y C,et al.L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology,2015,99(4):1 665-1 673. [6] STOLZ M,PETERS-WENDISCH P,ETTERICH H,et al.Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum[J].Applied and Environmental Microbiology,2007,73(3):750-755. [7] MUNDHADA H,SEOANE J M,SCHNEIDER K,et al.Increased production of L-serine in Escherichia coli through adaptive laboratory evolution[J].Metabolic Engineering,2017,39:141-150. [8] ZHANG X M,GAO Y J,CHEN Z W,et al.High-yield production of L-serine through a novel identified exporter combined with synthetic pathway in Corynebacterium glutamicum[J].Microbial Cell Factories,2020,19(1):115. [9] LI Y F,LIN Z Q,HUANG C,et al.Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing[J].Metabolic Engineering,2015,31:13-21. [10] CHAI D F,WANG G,FANG L,et al.The optimization system for preparation of TG1 competent cells and electrotransformation[J].MicrobiologyOpen,2020,9(7).DOI:10.1002/mbo3.1043. [11] 张苏平, 邱伟强,卢祺,等.全自动氨基酸分析仪法测定4种贝类肌肉中谷胱甘肽和游离氨基酸含量[J].食品科学,2017,38(4):170-176. ZHANG S P,QIU W Q,LU Q,et al.Determination of glutathione and free amino acids in muscles of four shellfish species by automatic amino acid analyzer[J].Food Science,2017,38(4):170-176. [12] TRAN K N T,EOM G T,HONG S H.Improving L-serine production in Escherichia coli via synthetic protein scaffold of SerB,SerC,and EamA[J].Biochemical Engineering Journal,2019,148:138-142. [13] ZHANG X M,XU G Q,SHI J S,et al.Microbial production of L-serine from renewable feedstocks[J].Trends in Biotechnology,2018,36(7):700-712. [14] XU G Q,ZHU Q J,LUO Y C,et al.Enhanced production of L-serine by deleting sdaA combined with modifying and overexpressing serA in a mutant of Corynebacterium glutamicum SYPS-062 from sucrose[J].Biochemical Engineering Journal,2015,103:60-67. [15] LI T,YE J W,SHEN R,et al.Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J].ACS Synthetic Biology,2016,5(11):1 308-1 317. [16] XU Y R,LIU Y F,LI F R,et al.Identification of a new gene yecC involved in threonine export in Escherichia coli[J].FEMS Microbiology Letters,2017,364(17).DOI:10.1093/femsle/tnx174. [17] MUNDHADA H,SCHNEIDER K,CHRISTENSEN H B,et al.Engineering of high yield production of L-serine in Escherichia coli[J].Biotechnology and Bioengineering,2016,113(4):807-816. [18] 崔云风, 石斌超,李晶,等.大肠杆菌丝氨酸转运系统单基因敲除对丝氨酸生产的影响[J].食品工业科技,2016,37(14):191-195. CUI Y F,SHI B C,LI J,et al.Effect of single-gene knockout of L-serine transport system on L-serine production in Escherichia coli[J]. Science and Technology of Food Industry,2016,37(14):191-195. [19] JONES C M,HERNÁNDEZ LOZADA N J,PFLEGER B F.Efflux systems in bacteria and their metabolic engineering applications[J].Applied Microbiology and Biotechnology,2015,99(22):9 381-9 393. [20] ZHANG Y,SHANG X L,LAI S J,et al.Reprogramming one-carbon metabolic pathways to decouple l-serine catabolism from cell growth in Corynebacterium glutamicum[J].ACS Synthetic Biology,2018,7(2):635-646. [21] XU D,FANG M J,WANG H J,et al.Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway[J].Applied Microbiology and Biotechnology,2020,104(6):2 481-2 488. [22] ESPINOSA M I,GONZALEZ-GARCIA R A,VALGEPEA K,et al.Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae[J].Nature Communications,2020,11(1):5 564. [23] WANG Y Z,MANOW R,FINAN C,et al.Adaptive evolution of nontransgenic Escherichia coli KC01 for improved ethanol tolerance and homoethanol fermentation from xylose[J].Journal of Industrial Microbiology & Biotechnology,2011,38(9):1 371-1 377.