Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (21): 246-252    DOI: 10.13995/j.cnki.11-1802/ts.027127
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
三重四级杆气质联用法测定水产品中12种碳九芳烃
钟建永, 张冰泉, 谢亚兴, 林诗凯, 刘少辉, 戴明男, 李志辉*
(中纺检测(福建)有限公司,福建 泉州,362000)
Determination of 12 kinds of C9 aromatics in aquatic products by gas chromatography-triple quadrupole mass spectrometry
ZHONG Jianyong, ZHANG Bingquan, XIE Yaxing, LIN Shikai, LIU Shaohui, DAI Mingnan, LI Zhihui*
(Zhongfang Textile and Apparel Testing(Fujian)Co.Ltd., Quanzhou 362000, China)
下载:  HTML  PDF (1891KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该文建立了水产品中12种碳九芳烃的三重四级杆气质联用分析测定方法。建立了12种碳九芳烃的多反应监测(multiple reaction monitoring,MRM)方法,得到了12种碳九芳烃的保留时间和MRM质谱参数,并绘制了其总离子流图(total ion chromatography,TIC)。对乙酸乙酯、正己烷、丙酮和正己烷∶丙酮(体积比7∶3)混合溶液共4种有机溶剂提取水产品中目标物的能力进行试验,最后确定以乙酸乙酯为提取溶剂。比较了超声和均质2种提取方式,确定以均质为该方法的提取方式,提取时间2 min。研究了不同净化吸附剂用量对12种碳九芳烃回收率的影响,确定加入的净化吸附剂用量为:0.1 g乙二胺-N-丙基硅烷(primary secondary amine,PSA)、1 g无水硫酸镁、1 g中性氧化铝。结果表明,12种碳九芳烃在质量浓度为0.01~1.0 μg/mL线性良好,仪器检出限为0.124~2.502 μg/L,定量限为0.413~8.340 μg/L,方法检出限为0.248~5.004 μg/kg,平均回收率为75%~112%,相对标准偏差(relative standard deviation,RSD)<6.7%,并用建立的方法测定了市场上不同水产品中12种碳九芳烃的含量,结果可靠。该方法可对水产品中的碳九芳烃进行定性定量分析,为地标乃至国标的建立提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟建永
张冰泉
谢亚兴
林诗凯
刘少辉
戴明男
李志辉
关键词:  碳九芳烃  三重四级杆气质联用  水产品  多反应监测    
Abstract: The method for the determination of 12 kinds of C9 aromatics in aquatic products by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) was established. The multiple reaction monitoring (MRM) method of 12 kinds of C9 aromatics was established, and the retention time and MRM mass spectrometric parameters of 12 kinds of C9 aromatics were obtained. The total ion chromatography (TIC) of 12 kinds of C9 aromatics was also plotted. The four organic solvents, ethyl acetate, n-hexane, acetone and n-hexane:acetone (7:3) mixed solution, were tested for their ability to extract the targets in aquatic products. Ethyl acetate was used as the final extraction solvent. Two extraction methods of ultrasonic and homogenization were compared, and the homogenization-based extraction method was determined. The extraction time was 2 min. The dosage of purification adsorbent was 0.1 g primary secondary amine (PSA), 1 g anhydrous magnesium sulfate, 1 g neutral alumina. The results showed that 12 kinds of C9 aromatics were detected in a linear dynamic range of 0.01-1.0 μg/mL. The limits of instrument detection (LOID), limits of quantitation (LOQ) and limits of method detection (LOMD) were 0.124-2.502 μg/L, 0.413-8.340 μg/L and 0.248-5.004 μg/kg respectively. The average recoveries were in the range of 75%-112% and the relative standard deviations(RSD) were below 6.7%. The method was used to determine the content of 12 kinds of C9 aromatics in different aquatic products. It provided reference for the establishment of landmarks and even national standards.
Key words:  C9 aromatics    GC-MS/MS    aquatic product    multiple reaction monitoring
收稿日期:  2021-02-26      修回日期:  2021-04-02           出版日期:  2021-11-15      发布日期:  2021-11-30      期的出版日期:  2021-11-15
基金资助: 2020年泉州市丰泽区科技计划项目(2020FZ13)
作者简介:  钟建永助理工程师和张冰泉工程师为共同第一作者(李志辉助理工程师为通讯作者,E-mail:lizhihui_rd@163.com)
引用本文:    
钟建永,张冰泉,谢亚兴,等. 三重四级杆气质联用法测定水产品中12种碳九芳烃[J]. 食品与发酵工业, 2021, 47(21): 246-252.
ZHONG Jianyong,ZHANG Bingquan,XIE Yaxing,et al. Determination of 12 kinds of C9 aromatics in aquatic products by gas chromatography-triple quadrupole mass spectrometry[J]. Food and Fermentation Industries, 2021, 47(21): 246-252.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027127  或          http://sf1970.cnif.cn/CN/Y2021/V47/I21/246
[1] 张宏, 周伯煌.泉港碳九泄漏事件引起的生态环境危机[J].中国环境管理干部学院学报,2019,29(1):38-41.
ZHANG H,ZHOU B H.Ecological environment crisis caused by carbon 9 leakage event in Quangang[J].Journal of the Environmental Management College of China-EMCC,2019,29(1):38-41.
[2] 朱林超, 王东光,顾佳鹏.海上石油的泄漏与防治[J].山东化工,2018,47(23):88-89.
ZHU L C,WANG D G,GU J P.Leakage and treatment methods of offshore oil[J].Shandong Chemical Industry,2018,47(23):88-89.
[3] 余春浩. 石油泄漏对土壤的污染[J].当代化工,2019,48(10):2 385-2 387;2 423.
YU C H.Review of soil pollution in petrochemical industry[J].Contemporary Chemical Industry,2019,48(10):2 385-2 387;2 423.
[4] 余文琴, 李根容,童兰艳,等.食品中苯系物的成因及检测研究进展[J].食品研究与开发,2020,41(9):207-212.
YU W Q,LI G R,TONG L Y,et al.Research progress in the formation and detection of benzene series in food[J].Food Research and Development,2020,41(9):207-212.
[5] 樊孝俊, 邓嘉辉,刘盈智,等.固定污染源中苯系物的便携式气质联用检测方法研究[J].中国环境监测,2015,31(3):139-143.
FAN X J,DENG J H,LIU Y Z,et al.Determination of benzene and its analogies in stationary source emission by portable gas chromatography-mass spectrometry[J].Environmental Monitoring in China,2015,31(3):139-143.
[6] 乌日娜, 金芬,杨莉莉,等.食用油脂中多环芳烃污染来源及控制技术研究展望[J].食品与发酵工业,2015,41(9):225-229;246.
WU R N,JIN F,YANG L L,et al.Review on the pollution sources and control techniques of polycyclic aromatic hydrocarbons (PAHs) in edible oil[J].Food and Fermentation Industries,2015,41(9):225-229;246.
[7] CHOI S,OH S H,KIM Y S,et al.APU SM technology for the production of BTX and LPG from pyrolysis gasoline using metal promoted zeolite catalyst[J].Catalysis Surveys from Asia,2006,10(2):110-116.
[8] 王廷海, 向永生,刘瑞刚,等.裂解碳九加氢工业化试验[J].化工进展,2012,31(5):1 169-1 172.
WANG T H,XIANG Y S,LIU R G,et al.Industrial study on hydrogenation process of cracking C9[J].Chemical Industry and Engineering Progress,2012,31(5):1 169-1 172.
[9] 葛昌平, 李桂明,张力擎,等.碳九关键组分双环戊二烯色谱检测方法应用探析[J].石化技术,2018,25(10):29-30.
GE C P,LI G M,ZHANG L Q,et al.Application of chromatographic determination of dicyclopentadiene,a key component of C9[J].Petrochemical Industry Technology,2018,25(10):29-30.
[10] 徐蓓, 顾正桂,顾黄宗,等.裂解碳九芳烃中苯乙烯的抽提方案设计及优化研究[J].现代化工,2014,34(9):118-121.
XU B,GU Z G,GU H Z,et al.Extractive process design and optimization research on refining styrene from cracked C9 Arene[J].Modern Chemical Industry,2014,34(9):118-121.
[11] 宗旭. 国内乙烯裂解碳九综合利用进展现状[J].化学工程与装备,2013(5):155-157.
ZONG X.Current status of domestic comprehensive utilization of ethylene cracking C9[J].Chemical Engineering & Equipment,2013(5):155-157.
[12] 陈远新. 萃取精馏与连续精馏结合从加氢裂解C9中提取三甲苯馏分的研究[D].南京:南京师范大学,2011.
CHEN Y X.Study on extractive distillation combined with continuous distillation to extract trimethylbenzene fraction from hydrocracking C9[D].Nanjing:Nanjing Normal University,2011.
[13] 杜郢,朱博雅.碳九芳烃的综合利用[J].化学与粘合,2004,26(6):350-353.
DU Y, ZHU B Y. The synthetic utilization of C9 aromatic compound[J]. Chemistry and Adhesion, 2004, 26(6):350-353.
[14] 张敏.裂解碳九综合利用[D].北京:北京化工大学,2013.
ZHANG M. Research on comprehensive utilization of pyrolysis Carbon9[D]. Beijing: Beijing University of Chemical Technology,2013.
[15] 孙桂芳, 刘国文.GC-MS与GC-FTIR联合测定C9烃馏分组成[J].分析测试学报,2004,23(Z1):289-292.
SUN G F,LIU G W.Analysis of the C9 fraction by GC-MS and GC-FTIR[J].Journal of Instrumental Analysis,2004,23(Z1):289-292.
[16] 郑新梅. 乙烯副产品碳九的GC/MS分析[J].河南化工,2001,18(8):33-34.
ZHENG X M.GC/MS analysis of mixed C9 of ethylene by-production[J].Henan Chemical Industry,2001,18(8):33-34.
[17] 中华人民共和国工业和信息化部. SH/T 1793—2015 工业用裂解碳九组成的测定气相色谱法[S].北京:中国石化出版社,2015.
Ministry of Industry and Information Technology of the People’s Republic of China.SH/T 1793—2015 Craking C9 for industrial use-determination of components-gas chromatographic method[S].Beijing:China Petrochemical Press,2015.
[18] 肖洁, 张珰妮,张天闻.海洋污染事故中裂解碳九主要成分的监测分析方法[J].渔业研究,2020,42(2):138-145.
XIAO J,ZHANG D N,ZHANG T W.Analysis methods for detecting cracking C9 in sudden marine pollution accidents[J].Journal of Fisheries Research,2020,42(2):138-145.
[19] 魏富梅. 水中挥发性有机物检测技术的进展[J].中国医药指南,2018,16(32):11-12.
WEI F M.Process in detection technology of volatile organic compounds in water[J].Guide of China Medicine,2018,16(32):11-12.
[20] 房贤文, 石仁德,魏巍.生活饮用水中挥发性有机物的几种检测方法[J].化工管理,2019 (20):45-46.
FANG X W,SHI R D,WEI W.Several detection methods of volatile organic compounds in drinking water[J].Chemical Enterprise Management,2019 (20):45-46.
[21] ANGELI I, CASATI S, RAVELLI A, et al. A novel single-step GC-MS/MS method for cannabinoids and 11-OH-THC metabolite analysis in hair[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 155:1-6.
[22] 刘笑笑, 张菁菁,李晨曦,等.低温微萃取-GCMS/MS联用技术检测食用油中20种持久性污染物[J].食品与发酵工业,2020,46(5):292-298.
LIU X X,ZHANG J J,LI C X,et al.Determination of 20 persistent pollutants in edible oil by freeze-degreasing-GCMS/MS[J].Food and Fermentation Industries,2020,46(5):292-298.
[1] 朱琳, 郭全友. 底物和环境因子对鱼源腐败希瓦氏菌和假单胞菌生长动力学的影响[J]. 食品与发酵工业, 2021, 47(7): 58-63.
[2] 肖叶, 叶精勤, 阎俊, 施文正, 卢瑛. 生物加工技术对水产品主要过敏原的致敏性消减作用研究进展[J]. 食品与发酵工业, 2021, 47(6): 274-279.
[3] 姜鹏飞, 郑杰, 陈瑶, 孙娜, 祁立波, 李德阳, 林松毅. 人工神经网络在水产领域中的应用[J]. 食品与发酵工业, 2021, 47(19): 288-295.
[4] 周春红, 许晓辉. 超高效液相色谱-三重四级杆质谱多反应监测模式测定奶粉中56种违禁药物残留[J]. 食品与发酵工业, 2021, 47(18): 250-257.
[5] 王忠合, 李晓婷, 胡文梅, 王军. 超高效液相色谱-高分辨质谱法测定肉类特征肽[J]. 食品与发酵工业, 2021, 47(18): 258-266.
[6] 蓝蔚青, 赵欣宇, 刘嘉莉, 梅俊, 谢晶. 植物多酚的主要抑菌机制及在水产品保鲜中的应用研究进展[J]. 食品与发酵工业, 2021, 47(10): 259-264.
[7] 李慧, 包海蓉. 天然多糖保鲜剂在水产品冷藏中的保鲜机理及应用形式[J]. 食品与发酵工业, 2021, 47(10): 271-277.
[8] 李爱阳, 伍素云, 刘宁, 刘水林. 电感耦合等离子体串联质谱测定水产品中的痕量重金属元素[J]. 食品与发酵工业, 2020, 46(9): 260-264.
[9] 魏春豪, 迟海, 杨光昕, 陶乐仁. 副溶血性弧菌多克隆抗体制备及应用[J]. 食品与发酵工业, 2020, 46(8): 157-161.
[10] 孙晓红, 刘军军, 蓝蔚青, 孙雨晴, 谢晶. 气味指纹技术在水产品品质评价中的应用研究进展[J]. 食品与发酵工业, 2020, 46(5): 314-320.
[11] 胡元庆, 沈子晨, 李凤霞, 吕琳雪, 周赞虎. 基于blaCARB-17基因建立水产品中副溶血弧菌的环介导等温扩增技术检测方法[J]. 食品与发酵工业, 2020, 46(23): 198-206.
[12] 汪经邦, 谢晶. 多糖类可食性膜在水产品保鲜中的研究进展[J]. 食品与发酵工业, 2020, 46(23): 269-278.
[13] 李秋莹, 张婧阳, 孙彤, 谢晶, 邓尚贵, 林洪, 郭晓华, 励建荣. ε-聚赖氨酸及其复合保鲜技术在水产品保鲜中的研究进展[J]. 食品与发酵工业, 2020, 46(22): 263-269.
[14] 蔡燕萍, 余晓婉, 张庆春, 何潇庭, 邵天伦, 韩眺, 刘晔峰, 丁玉庭, 刘建华. 水产品生物活性肽的研究进展[J]. 食品与发酵工业, 2020, 46(16): 249-256.
[15] 尹一鸣, 徐永霞, 张朝敏, 李学鹏, 李秋莹, 谢晶, 励建荣. 水产品贮藏期间风味劣变机理的研究进展[J]. 食品与发酵工业, 2020, 46(14): 269-274.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn