Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (24): 1-6    DOI: 10.13995/j.cnki.11-1802/ts.027411
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于全基因组重测序策略对谷氨酸棒杆菌外源蛋白高产菌株相关基因的挖掘及初步验证
孟丽虹1,2,3, 刘秀霞1,2,3*, 杨艳坤1,2,3, 白仲虎1,2,3
1(江南大学,工业生物技术教育部重点实验室,江苏 无锡,214122)
2(江南大学,粮食发酵工艺与技术国家工程实验室,江苏 无锡,214122)
3(江南大学 生物工程学院,江苏 无锡,214122)
Mining and preliminary verification of genes involved in the high heterologous protein production of Corynebacterium glutamicum based on whole-genome resequencing
MENG Lihong1,2,3, LIU Xiuxia1,2,3*, YANG Yankun1,2,3, BAI Zhonghu 1,2,3
1(Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China)
2(National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi 214112, China)
3(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (2509KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 谷氨酸棒杆菌是食品安全级菌株,可作为生产高价值产物的优良底盘细胞用于工业生产。它具有良好的分泌系统,是表达重组蛋白的潜在宿主,有极大的研究价值。为优化底盘细胞提高其蛋白表达能力,挖掘并验证谷氨酸棒杆菌中与外源蛋白高表达相关的基因。在谷氨酸棒杆菌重测序的基础上,应用生物信息学对单核苷酸多态性(single-nucleotide polymorphisms, SNP)基因进行挖掘,分析基因保守结构域。通过构建SNP基因过表达和敲除重组菌株,评估其生长情况以及增强型绿色荧光蛋白(enhanced green fluorescence protein, EGFP)和人重组特立帕肽(recombinant human teriparatide, rtPTH)的外源蛋白表达能力。分析并整理了高产量外源蛋白菌株的重测序数据,共有33个SNP突变位点,主要涉及5个基因。其中SNP重组菌株over-2370和ko-973-974的荧光值最高,并且发酵生产rtPTH,均比野生型(wild type,WT)提高了近1倍。该研究成功挖掘出与蛋白表达相关的基因GL002370和GL000974,这些发现将有助于获得优化的底盘细胞,并为深入研究增加蛋白产量的靶基因提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟丽虹
刘秀霞
杨艳坤
白仲虎
关键词:  谷氨酸棒杆菌  重测序  蛋白表达  单核苷酸多态性(single-nucleotide polymorphisms, SNP)  基因过表达和敲除    
Abstract: Food-safe strain Corynebacterium glutamicum can be used as an excellent chassis cell for industrial production of high-value products. It is a potential host for the expression of recombinant proteins due to its good secretion system. In order to optimize the chassis cells and improve their heterologous protein expression ability, genes in C. glutamicum which can highly express heterologous protein were mined and verified. On the basis of whole-genome resequencing of C. glutamicum, bioinformatics was used to mine single-nucleotide polymorphisms(SNP) genes and their conserved domains. The recombinant strains with overexpression or knockout of SNP genes were constructed to evaluate their(SNP) growth and the expression ability of heterologous proteins EGFP and rtPTH. The resequencing data of high heterologous protein production strains were mined. There were 33 SNPs, mapped to five genes. Among them, SNP recombinant strains over-2370 and ko-973-974 had the highest fluorescence intensity, and the production of rtPTH by fermentation was nearly two-folds higher than that of wild type. This study has successfully mined genes involved in the high yield of heterologous protein, GL002370 and GL000974. These findings will help to obtain optimized chassis cells and provide guidance for in-depth research on target genes that can increase protein production.
Key words:  Corynebacterium glutamicum    resequence    protein expression    single-nucleotide polymorphisms    gene overexpression and knockout
收稿日期:  2021-03-19      修回日期:  2021-04-02           出版日期:  2021-12-25      发布日期:  2022-01-21      期的出版日期:  2021-12-25
基金资助: 国家自然科学基金项目(21808082;21878124;22078128;21938004)
作者简介:  硕士研究生(刘秀霞副教授为通讯作者,E-mail:liuxiuxia@jiangnan.edu.cn)
引用本文:    
孟丽虹,刘秀霞,杨艳坤,等. 基于全基因组重测序策略对谷氨酸棒杆菌外源蛋白高产菌株相关基因的挖掘及初步验证[J]. 食品与发酵工业, 2021, 47(24): 1-6.
MENG Lihong,LIU Xiuxia,YANG Yankun,et al. Mining and preliminary verification of genes involved in the high heterologous protein production of Corynebacterium glutamicum based on whole-genome resequencing[J]. Food and Fermentation Industries, 2021, 47(24): 1-6.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.027411  或          http://sf1970.cnif.cn/CN/Y2021/V47/I24/1
[1] KIM K, CHOE D, LEE D H, et al.Engineering biology to construct microbial chassis for the production of difficult-to-express proteins[J].International Journal of Molecular Sciences, 2020, 21(3):990.
[2] LIU Y F, LIU L, LI J H, et al.Synthetic biology toolbox and chassis development in Bacillus subtilis [J].Trends in Biotechnology, 2019, 37(5):548-562.
[3] LEE J Y, NA Y A, KIM E, et al.The actinobacterium Corynebacterium glutamicum, an industrial workhorse [J].Journal of Microbiology and Biotechnology, 2016, 26(5):807-822.
[4] ZHANG X, ZHANG X M, XU G Q, et al.Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum [J].Applied Microbiology and Biotechnology, 2018, 102(14):5 939-5 951.
[5] LIU Y F, SU A Q, LI J H, et al.Towards next-generation model microorganism chassis for biomanufacturing[J].Applied Microbiology and Biotechnology, 2020, 104(21):9 095-9 108.
[6] 郭鹤宝, 王星, 何山文, 等.表型特征结合基因组分析鉴定不同菌落形态Bacillus velezensis ACCC 19742 [J].生物技术通报, 2020, 36(2):142-148.GUO H B, WANG X, HE S W, et al.Phenotypic characteristics combined with genomic analysis to identify different colony morphology Bacillus Velezensis ACCC 19742 [J].Biotechnology Bulletin, 2020, 36(2):142-148.
[7] 戴利铭, 李岚岚, 刘一贤, 等.解淀粉芽孢杆菌生防菌BS-3全基因组测序及生物信息分析 [J].微生物学通报, 2021,48(6):2 073-2 088.DAI L M, LI L L, LIU Y X, et al.Whole genome sequencing and genomics analysis of Bacillus amyloliquefaciens BS-3 with biocontrol activity[J].Microbiology Bulletin,2021,48(6):2 073-2 088.
[8] ZHANG W B, YAN H L, ZHU Z C, et al.Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit [J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, 21(9):716-726.
[9] TRENTINI D B, SUSKIEWICZ M J, HEUCK A, et al.Arginine phosphorylation marks proteins for degradation by a Clp protease [J].Nature, 2016, 539(7 627):48-53.
[10] CROSS E M, ARAGÃO D, SMITH K M, et al.Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii[J].Biochemical and biophysical Research Communications, 2019, 518(3):465-471.
[11] PLEŠKA M, QIAN L, OKURA R, et al.Bacterial autoimmunity due to a restriction-modification system [J].Current Biology, 2016, 26(3):404-409.
[12] XU S Y, GUPTA Y K.Natural zinc ribbon HNH endonucleases and engineered zinc finger nicking endonuclease [J].Nucleic Acids Research, 2013, 41(1):378-390.
[13] FERREIRA H, BUTLER-COLE B, BURGIN A, et al.Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD [J].Journal of Molecular Biology, 2003, 330(1):15-27.
[14] WANG F, MEI Z Q, QI Y T, et al.Structure and mechanism of the hexameric MecA-ClpC molecular machine [J].Nature, 2011, 471(7 338):331-335.
[15] BAKHTIARI N, AMINI BAYAT Z, SAGHARIDOUZ S, et al.Overexpression of recombinant human teriparatide, rhPTH (1-34) in Escherichia coli:An innovative gene fusion approach [J].Avicenna Journal of Medical Biotechnology, 2017, 9(1):19-22.
[16] RUAN A, REN C, QUAN S.Conversion of the molecular chaperone Spy into a novel fusion tag to enhance recombinant protein expression [J].Journal of Biotechnology, 2020, 307:131-138.
[17] 康振辉. NADPH依赖性硫氧还蛋白还原酶C在植物质体中的作用 [J].中国生物化学与分子生物学报, 2019, 35(2):121-130.KANG Z H.Roles of NADPH-dependent thioredoxin reductase C in chloroplast[J].Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(2):121-130.
[18] STELLA R G, WIECHERT J, NOACK S, et al.Evolutionary engineering of Corynebacterium glutamicum [J].Biotechnology Journal 2019, 14(9):1800444.
[19] LIU X X, ZHAO Z H, ZHANG W, et al.Bicistronic expression strategy for high-level expression of recombinant proteins in Corynebacterium glutamicum [J].Engineering in Life Sciences, 2017, 17(10):1 118-1 125.
[1] 芦楠, 李宇虹, 陈宁, 张成林. L-异亮氨酸及其衍生物代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(9): 307-313.
[2] 熊海波, 陈志超, 曹华杰, 徐庆阳. 全营养流加对谷氨酸棒杆菌发酵产L-异亮氨酸的影响[J]. 食品与发酵工业, 2021, 47(6): 11-17.
[3] 熊海波, 刘云鹏, 徐庆阳. 超声对谷氨酸棒杆菌发酵L-异亮氨酸的影响[J]. 食品与发酵工业, 2021, 47(4): 40-46.
[4] 汪昊, 王阳, 胡立涛, 康振, 堵国成. 重组谷氨酸棒杆菌发酵生产高分子质量透明质酸[J]. 食品与发酵工业, 2021, 47(17): 15-21.
[5] 胡立涛, 王阳, 李佳莲, 周思延, 王道安, 尹国斌, 刘京京, 康振, 陈坚. 代谢工程改造谷氨酸棒杆菌合成透明质酸[J]. 食品与发酵工业, 2020, 46(18): 1-7.
[6] 杜丽红, 熊海波, 徐达, 徐庆阳, 陈宁. 利用谷氨酸棒杆菌CRISPRi系统构建L-缬氨酸高产菌株[J]. 食品与发酵工业, 2020, 46(17): 1-8.
[7] 马振锋, 徐美娟, 杨套伟, 张显, 邵明龙, 中西秀树, 饶志明. 以葡萄糖为底物合成2-吡咯烷酮重组谷氨酸棒杆菌的构建及发酵研究[J]. 食品与发酵工业, 2020, 46(11): 1-8.
[8] 颜文斌, 张晓梅, 史劲松, 许正宏. rhtAtyrP对谷氨酸棒杆菌产L-丝氨酸的影响分析[J]. 食品与发酵工业, 2020, 46(11): 9-16.
[9] 石拓,刘晓倩,范晓光,陈宁. 缬氨酸生产菌株的定向改造及发酵优化[J]. 食品与发酵工业, 2019, 45(5): 19-24.
[10] 赵文平, 贾龙刚, 路福平, 刘夫锋. 基于β-内酰胺酶构建大肠杆菌体内Aβ42聚集抑制剂筛选体系[J]. 食品与发酵工业, 2019, 45(19): 17-24.
[11] 侯正杰, 张权威, 莫晓琳, 夏利, 谭淼, 孙全伟, 马倩, 陈宁. His-pull down联合质谱鉴定谷氨酸棒杆菌中乙酰羟酸合酶IlvN的相互作用蛋白[J]. 食品与发酵工业, 2019, 45(16): 11-17.
[12] 张震, 熊海波, 徐庆阳. L-色氨酸混菌发酵工艺[J]. 食品与发酵工业, 2019, 45(14): 115-121.
[13] 孟静,芦楠,朱福周,董解荣,王子申,陈宁,张成林. 两阶段溶氧控制及FeSO4添加对谷氨酸棒杆菌合成4-羟基异亮氨酸的影响[J]. 食品与发酵工业, 2019, 45(12): 1-6.
[14] 杨汉昆, 徐建中, 张伟国. 阻断辅因子NADPH合成对谷氨酸棒杆菌生长及产物合成的影响[J]. 食品与发酵工业, 2019, 45(10): 1-9.
[15] 彭枫, 刘秀霞, 陈静, 等. 不同表达模式组合对谷氨酸棒状杆菌中脑钠肽蛋白表达的影响[J]. 食品与发酵工业, 2018, 44(8): 1-7.
[1] ZHANG Zhe-yuan.et al. Effects of different total solids of goat milk on quality of goat milk yogurt #br# [J]. Food and Fermentation Industries, 2017, 43(11): 112 .
[2] JIA Ya-nan et al. The Inhibitionofα-glucosidaseand Antioxidant Activityof Endophyte Metaboliteisolated from Mulberry[J]. Food and Fermentation Industries, 2017, 43(11): 132 .
[3] XIE Guang-fa et al. New progressinChinesericewinebrewing technology andequipment[J]. Food and Fermentation Industries, 2017, 43(11): 225 .
[4] ZOU Yu-feng et al. Review onresearchprogressanddevelopmentofgel-typemeat productsprocessing technology[J]. Food and Fermentation Industries, 2017, 43(11): 232 .
[5] JI Xiao-kai et al. Research advance in the effect of electric alstimulation on beef quality[J]. Food and Fermentation Industries, 2017, 43(11): 244 .
[6] LIU Yan-yun et al. Research and development prospects of Northwest traditional taste food Jiangshui[J]. Food and Fermentation Industries, 2017, 43(11): 262 .
[7] SONG Yuan-de. Establishmentandcomparisonofnew andoldeditionofqualification conditionsforfoodinspectionagency[J]. Food and Fermentation Industries, 2017, 43(11): 268 .
[8] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[9] LI Tong, et all . Effects of lactic acid bacteria on nutritional components, aroma components and antioxidant activity of compound soybean milk[J]. Food and Fermentation Industries, 0, (): 1 .
[10] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn