Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 105-111    DOI: 10.13995/j.cnki.11-1802/ts.029481
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
羧甲基多孔淀粉表征及其对槲皮素吸附研究
王宇霞, 马云翔, 苟丽娜, 李敏, 张盛贵*
(甘肃农业大学 食品科学与工程学院,甘肃 兰州,730070)
The characterization of carboxymethyl porous starch and its adsorption on quercetin
WANG Yuxia, MA Yunxiang, GOU Lina, LI Min, ZHANG Shenggui*
(College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China)
下载:  HTML  PDF (4685KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以马铃薯多孔淀粉(porous starch,PS)为材料,制备具有较好溶解性和吸附性的羧甲基多孔淀粉(carboxymethyl porous starch,CMPS),并应用于生物活性物质载体。实验通过N2-吸/脱附、扫描电镜、液态核磁、吸附性能分析等方法,研究了制备样品CMPS的特性。结果表明,以PS为主体,成功制备了取代度为0.25~1.44的CMPS。PS的比表面积(42.88 m2/g)最大,羧甲基化后CMPS的比表面积(12.06 m2/g)减小,但较羧甲基淀粉(carboxymethyl starch,CMS)的比表面积(0.87 m2/g)明显增加。多孔和羧甲基处理均使淀粉结晶消失,醚化反应降低了淀粉的热稳定性。CMPS吸附槲皮素(carboxymethyl porous starch@quercetin,CMPS@Q)的负载率为13.71%,较CMS吸附槲皮素(carboxymethyl starch@quercetin,CMS@Q)负载率(0.57 %)提高了95.84%。与不溶于水的槲皮素对比,CMPS@Q的水溶性(34.00%)较CMS@Q水溶性(23.33%)提高了45.74%。制备的CMPS具备良好的多孔结构、比表面积、溶解性和吸附性能,可作为低水溶性功能性物质载体,具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宇霞
马云翔
苟丽娜
李敏
张盛贵
关键词:  多孔淀粉  羧甲基淀粉  比表面积  结构表征  槲皮素    
Abstract: Potato porous starch (PS) is used as a material to prepare carboxymethyl porous starch (CMPS) with better solubility and adsorption, then CMPS will be used as a carrier of biologically active substances. The experiment used N2-adsorption/desorption, scanning electron microscopy (SEM), liquid nuclear magnetic (1H NMR), adsorption performance analysis and other methods to study the characteristics of the prepared samples CMPS. The results showed that carboxymethyl porous starch (CMPS) with a degree of substitution (DS) of 0.25-1.44 was successfully prepared. The specific surface area of PS (42.88 m2/g) was the largest. After carboxymethylation, the specific surface area (12.06 m2/g) of CMPS decreased. However, compared with the specific surface area (0.87 m2/g) of carboxymethyl starch (CMS), it was still significantly increased. Both porous and carboxymethyl treatments made the starch crystal disappear, and the etherification reaction reduced the thermal stability of the starch. The loading rate of CMPS@Q was 13.71%, which was 95.84% higher than the loading rate of CMS@Q (0.57%). Compared with quercetin insoluble in water, the water solubility of CMPS@Q (34.00%) was 45.74% higher than that of CMS@Q (23.33%). The prepared CMPS has a good porous structure, specific surface area, solubility and adsorption performance, and can be used as a carrier of low water-soluble functional substances.
Key words:  porous starch    carboxymethyl starch    specific surface area    structural characterization    quercetin
收稿日期:  2021-09-22      修回日期:  2021-10-11           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 甘肃省重点研发项目(20YF8NA33);中央引导地方科技发展专项(ZCYD-2020-3)
作者简介:  硕士研究生(张盛贵教授为通信作者,E-mail:zhangshenggui@gsau.edu.cn)
引用本文:    
王宇霞,马云翔,苟丽娜,等. 羧甲基多孔淀粉表征及其对槲皮素吸附研究[J]. 食品与发酵工业, 2022, 48(20): 105-111.
王宇霞,马云翔,苟丽娜,et al. The characterization of carboxymethyl porous starch and its adsorption on quercetin[J]. Food and Fermentation Industries, 2022, 48(20): 105-111.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.029481  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/105
[1] KAUR B, ARIFFIN F, BHAT R, et al.Progress in starch modification in the last decade[J].Food Hydrocolloids, 2012, 26(2):398-404.
[2] WILPISZEWSKA K, ANTOSIK A K, SPYCHAJ T.Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films[J].Carbohydrate Polymers, 2015, 128:82-89.
[3] LIU J, WANG X C, YONG H M, et al.Preparation, characterization, digestibility and antioxidant activity of quercetin grafted Cynanchum auriculatum starch[J].International Journal of Biological Macromolecules, 2018, 114:130-136.
[4] 卢双彦, 张雅楠, 翟光喜.槲皮素纳米制剂研究进展[J].药物生物技术, 2019, 26(6):552-557.LU S Y, ZHANG Y N, ZHAI G X.Development of the quercetin loaded nanoformulations[J].Pharmaceutical Biotechnology, 2019, 26(6):552-557.
[5] LIN J, TEO L M, LEONG L P, et al.In vitro bioaccessibility and bioavailability of quercetin from the quercetin-fortified bread products with reduced glycemic potential[J].Food Chemistry, 2019, 286:629-635.
[6] CHEN J H, WANG Y X, LIU J, et al.Preparation, characterization, physicochemical property and potential application of porous starch:A review[J].International Journal of Biological Macromolecules, 2020, 148:1 169-1 181.
[7] JU J, CHEN X Q, XIE Y F, et al.Simple microencapsulation of plant essential oil in porous starch granules:Adsorption kinetics and antibacterial activity evaluation[J].Journal of Food Processing and Preservation, 2019, 43(10):e14156.
[8] WANG H L, LYU J, JIANG S W, et al.Preparation and characterization of porous corn starch and its adsorption toward grape seed proanthocyanidins[J].Starch-Stárke, 2016, 68(11-12):1 254-1 263.
[9] HU J, TIAN T, XIAO Z B.Preparation of cross-linked porous starch and its adsorption for chromium (VI) in tannery wastewater[J].Polymers for Advanced Technologies, 2015, 26(10):1 259-1 266.
[10] BUDARIN V, CLARK J H, HARDY J J E, et al.Starbons:New starch-derived mesoporous carbonaceous materials with tunable properties[J].Angewandte Chemie International Edition, 2006, 45(23):3 782-3 786.
[11] ZHANG B, LI X M, XIE Q T, et al.Preparation and characterization of non-crystalline granular starch and corresponding carboxymethyl starch[J].International Journal of Biological Macromolecules, 2017, 103:656-662.
[12] 陈庆. 直链淀粉的羧化和多孔改性及其对氨和苯酚的吸附性能研究[D].杭州:浙江大学, 2017.CHEN Q.Study on carboxylation, pore-forming of amylose and its ammonia and phenol adsorption properties[D].Hangzhou:Zhejiang University, 2017.
[13] AHMAD M, MUDGIL P, GANI A, et al.Nano-encapsulation of catechin in starch nanoparticles:Characterization, release behavior and bioactivity retention during simulated in-vitro digestion[J].Food Chemistry, 2019, 270:95-104.
[14] 刘维信, 冯希环, 蔡宋宋, 等.大葱槲皮素含量的测定[J].中国农学通报, 2008,24(3):266-269.LIU W X, FENG X H, CAI S S, et al.Evaluation of quercetin content in Welsh onion[J].Chinese Agricultural Science Bulletin, 2008,24(3):266-269.
[15] 毕英慧. 羧甲基马铃薯淀粉的制备、反应动力学及性能研究[D].兰州:兰州大学, 2009.BI Y H.Study on the preparation, reaction kinetics and properties of carboxymethyl potato starch[D].Lanzhou:Lanzhou University, 2009.
[16] 李海燕, 马云翔, 俞力月,等.辛烯基琥珀酸酐改性多孔淀粉结构表征[J].中国粮油学报, 2020, 35(6):70-75.LI H Y, MA Y X, YU L Y, et al.Structure characterizatin of octenyl succinic anhydride modified porous starch[J].Journal of the Chinese Cereals and Oils Association, 2020, 35(6):70-75.
[17] WANG L F, PAN S Y, HU H, et al.Synthesis and properties of carboxymethyl kudzu root starch [J].Carbohydrate Polymers, 2010, 80(1):174-179.
[18] ZHANG B, CUI D P, LIU M Z, et al.Corn porous starch:Preparation, characterization and adsorption property[J].International Journal of Biological Macromolecules, 2012, 50(1):250-256.
[19] 苟丽娜, 马云翔, 王宇霞, 等.高比表面积阿魏酸多孔淀粉酯结构表征及体外消化特性[J].食品与发酵工业, 2021,47(22):76-83.GOU L N, MA Y X, WANG Y X, et al.Structural characterization and in vitro digestibility of ferulic acid porous starch ester with high specific surface area[J].Food and Fermentation Industries, 2021,47(22):76-83.
[20] LIU Y, LU K Y, HU X T, et al.Structure, properties and potential applications of phytoglycogen and waxy starch subjected to carboxymethylation[J].Carbohydrate Polymers, 2020, 234:115908.
[21] NAMAZI H, FATHI F, DADKHAH A.Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles[J].Scientia Iranica, 2011, 18(3):439-445.
[22] ZHOU M, SHI L, CHENG F, et al.High-efficient preparation of carboxymethyl starch via ball milling with limited solvent content[J].Starch - Stárke, 2018, 70(5-6):1700250.
[23] HE X, GONG X C, LI W F, et al.Preparation and characterization of amphiphilic composites made with double-modified (etherified and esterified) potato starches[J].Starch-Stárke, 2019, 71(9-10):1900089.
[24] SING, K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J].Pure and Applied Chemistry, 1985, 57(4), 603-619.
[25] UBEYITOGULLARI A, CIFTCI O N.Generating phytosterol nanoparticles in nanoporous bioaerogels via supercritical carbon dioxide impregnation:Effect of impregnation conditions[J].Journal of Food Engineering, 2017, 207:99-107.
[26] LI X, GAO W Y, HUANG L J, et al.Preparation and physicochemical properties of carboxymethyl Fritillaria ussuriensis Maxim.starches[J].Carbohydrate Polymers, 2010, 80(3):768-773.
[27] SUJKA M, PANKIEWICZ U, KOWALSKI R, et al.Porous starch and its application in drug delivery systems[J].Polymers in Medicine, 2018, 48(1):25-29.
[1] 张阳, 张庆, 赵祎, 邓利玲, 钟耕. κ-卡拉胶/魔芋葡甘聚糖/羧甲基淀粉复合膜及空心胶囊制备[J]. 食品与发酵工业, 2022, 48(8): 150-158.
[2] 谭海, 员林娜, 卢南巡, 张中华, 常景玲, 李志刚. 槲皮素抑制黄嘌呤氧化酶活性促进环磷酸腺苷发酵合成[J]. 食品与发酵工业, 2022, 48(7): 22-28.
[3] 李茂玮, 朱莉, 吴传超, 李敏, 詹晓北. 表面活性剂胁迫下的高透明型黄原胶的发酵生产及其流变性能研究[J]. 食品与发酵工业, 2022, 48(18): 68-74.
[4] 李敏, 汪月, 苟丽娜, 王宇霞, 张盛贵. 丁酸酐改性多孔淀粉作为Pickering乳液稳定剂的应用研究[J]. 食品与发酵工业, 2022, 48(18): 198-204.
[5] 则拉莱·司玛依, 帕尔哈提·柔孜, 吾哈丽妮萨·麦麦提托合提, 古丽米热·阿巴拜克日, 邓杰, 杨晓君. 三种甘草种子蛋白的提取方法、结构及抗氧化活性比较研究[J]. 食品与发酵工业, 2022, 48(18): 227-234.
[6] 张晓晓, 柴智, 冯进, 崔莉, 李春阳, 李莹, 黄午阳. 牛蒡多糖的提取及生物活性研究进展[J]. 食品与发酵工业, 2021, 47(6): 280-288.
[7] 杨燕敏, 郑振佳, 高琳, 张砚垒, 张仁堂. 红枣多糖超声波提取、结构表征及抗氧化活性评价[J]. 食品与发酵工业, 2021, 47(5): 120-126.
[8] 杨波, 王珂, 杨光, 吴君波, 江容安. 黄原胶的干热改性及复配增稠应用[J]. 食品与发酵工业, 2021, 47(4): 116-122.
[9] 曹丛丛, 管玲娟, 屠飘涵, 蔡平梨, 成向荣. 具有潜在补血活性的阿胶肽铁螯合物的结构表征[J]. 食品与发酵工业, 2021, 47(24): 28-34.
[10] 傅俏琴, 张露, 贾晓燕, 马天新, 涂宗财. 3-羟基糖取代对槲皮素与人血清蛋白相互作用的影响[J]. 食品与发酵工业, 2021, 47(23): 70-77.
[11] 苟丽娜, 马云翔, 王宇霞, 李敏, 陈金凤, 汪月, 张盛贵. 高比表面积阿魏酸多孔淀粉酯结构表征及体外消化特性[J]. 食品与发酵工业, 2021, 47(22): 76-83.
[12] 严静, 曾丽萍, 李俊健, 黄达荣, 黎攀, 杜冰. 不同护色处理对山药多糖的结构和免疫活性的影响[J]. 食品与发酵工业, 2021, 47(22): 199-207.
[13] 徐洁茹, 童群义. 乙酰化可溶性大豆多糖的制备及其乳化性能研究[J]. 食品与发酵工业, 2021, 47(21): 148-157.
[14] 赵鸾, 夏杨毅, 王立宇, 吴佳. 鲜毛肚和盐渍毛肚胶原蛋白的结构表征[J]. 食品与发酵工业, 2021, 47(20): 114-119.
[15] 王冰, 朱莉, 李茂玮, 詹晓北. 适应性驯化生产低分子质量β-葡聚糖及其抗氧化活性研究[J]. 食品与发酵工业, 2021, 47(17): 27-33.
[1] WU Xiang-yi et al . Effect of yak milk casein hydrolysates on protein carbonyl content and activity of antioxidant enzymes of oxidative damaged HepG2 cells induced by H2O2[J]. Food and Fermentation Industries, 2017, 43(11): 34 -38 .
[2] FAN Zi-wei et al. Study on the physicochemical properties ofYunnansoft rice starch[J]. Food and Fermentation Industries, 2017, 43(11): 87 .
[3] ZHAO Xiang-ying et al. Effect of Glucose on xylitol fermentation byCandida tropicalis SFX - Y9[J]. Food and Fermentation Industries, 2017, 43(11): 107 .
[4] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[5] WU Peng et al. The development of microwave cooked carrot chips based on domestic microwave oven[J]. Food and Fermentation Industries, 2017, 43(11): 180 .
[6] YANG Zhuo et al. Genesequencing andtraditionalmicrobialcultureforthedetectionof aerogeninswelledpacking soy sauce[J]. Food and Fermentation Industries, 2017, 43(11): 197 .
[7] WANG Jun et al. Screening methodof37 foodadditivesinfruitcansby UPLC-Q/TOF[J]. Food and Fermentation Industries, 2017, 43(11): 212 .
[8] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[9] DU Hai et al..

Isolation oflactic acid bacteriaand theircharacteristic of carbon utilization during the liquor-making process of Chinese roasted sesame-like flavor liquor [J]. Food and Fermentation Industries, 0, (): 1 .

[10] . Determination and Property Research on Main Starter Bacteria of Yogurt to Induce Postacidification[J]. Food and Fermentation Industries, 2002, 28(4): 24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn