Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 36-43    DOI: 10.13995/j.cnki.11-1802/ts.029991
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于变量优选和近红外光谱技术的红富士苹果产地溯源
张立欣1,2, 杨翠芳1, 陈杰1, 张晓果3, 张楠楠1, 张晓1*
1(塔里木大学 信息工程学院,新疆维吾尔自治区 阿拉尔,843300)
2(南京理工大学 理学院,江苏 南京,210094)
3(河南城建学院 数理学院,河南 平顶山,467036)
Tracing the origin of Red Fuji apple based on variable optimization and near-infrared spectroscopy
ZHANG Lixin1,2, YANG Cuifang1, CHEN Jie1, ZHANG Xiaoguo3, ZHANG Nannan1, ZHANG Xiao1*
1(College of Information Engineering, Tarim University, Alar Xinjiang Uygur Autonomous Region, Alaer 843300, China)
2(School of Science, Nanjing University of Science and Technology, Nanjing 210094, China)
3(School of Mathematics and Physics, Henan University of Urban Construction, Pingdingshan 467036, China)
下载:  HTML  PDF (4016KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实现对红富士苹果的产地溯源,采集阿克苏、静宁、灵宝、烟台的红富士苹果近红外光谱数据,分别采用归一化、中心化、一阶导数、二阶导数、标准正态变换、多元散射校正(multivariate scattering correction,MSC)、小波变换、SG平滑变换、傅里叶变换等9种方法对原始光谱进行预处理,建立概率神经网络(probabilistic neural network,PNN)模型对苹果的产地进行识别。结果表明,MSC预处理之后的模型总准确率最高,为97.5%,阿克苏、静宁、灵宝、烟台4个产地的准确率分别为100%、100%、90%、100%。为简化模型,对MSC预处理之后的光谱数据分别采用主成分法、连续投影算法(successive projection algorithm,SPA)、竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、随机蛙跳算法(random frog,RF)、CARS-SPA、RF-SPA选取特征变量建模。综合考虑正确率和模型的复杂性,最优模型MSC-CARS-SPA-PNN的测试集的总准确率为98.75%,4个产地的红富士苹果准确率分别达到了100%、100%、95%、100%。该研究可为红富士苹果的产地溯源提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张立欣
杨翠芳
陈杰
张晓果
张楠楠
张晓
关键词:  苹果  近红外光谱  概率神经网络  连续投影算法  竞争性自适应重加权算法    
Abstract: Near-infrared spectrum data of Red Fuji apples from Aksu, Jingning, Lingbao, and Yantai were collected to trace the origin of Red Fuji apples. Nine methods including normalization (NOR), centralization (CEN), first derivative (1-DER), second derivative (2-DER), standard normal transform (SNV), multivariate scattering correction (MSC), wavelet transform (WT), SG smoothing transform (SG), and Fourier transform (FT) were used to preprocess the original spectrum. Results showed that the model after multivariate scattering correction pretreatment had the highest recognition rate of 97.5%, and the recognition rates of Aksu, Jingning, Lingbao, and Yantai were 100%, 100%, 90%, and 100%, respectively. To simplify the model, principal component analysis (PCA), successive projection algorithm (SPA), competitive adaptive reweighted sampling (CARS), random frog (RF), and their combination algorithms were used to select characteristic variables. Results showed that the total recognition rate of MSC-CARS-SPA-PNN was 98.75%, and the recognition rates of Red Fuji apples from four producing areas were 100%, 100%, 95%, and 100%, respectively, which could provide theoretical reference for the origin discrimination of Red Fuji apples.
Key words:  apple    near-infrared spectrum    probabilistic neural network    successive projection algorithm    competitive adaptive reweighted sampling
收稿日期:  2020-11-06      修回日期:  2021-12-17           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 塔里木大学校长基金(TDZKSS202006);国家自然科学基金(31960503);塔里木大学农业工程实验室重点项目(TDNG20180301);塔里木大学-中国农业大学联合基金(ZNLH202102)
作者简介:  博士,副教授(张晓副教授为通信作者,E-mail:824607287@qq.com)
引用本文:    
张立欣,杨翠芳,陈杰,等. 基于变量优选和近红外光谱技术的红富士苹果产地溯源[J]. 食品与发酵工业, 2022, 48(20): 36-43.
张立欣,杨翠芳,陈杰,et al. Tracing the origin of Red Fuji apple based on variable optimization and near-infrared spectroscopy[J]. Food and Fermentation Industries, 2022, 48(20): 36-43.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.029991  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/36
[1] 曹晓峰, 任惠如, 李幸芝, 等.高光谱技术结合特征波长/光谱指数对冬枣成熟度可视化判别[J].光谱学与光谱分析, 2018,38(7):2 175-2 182.CAO X F, REN H R, LI X Z, et al.Discrimination of winter jujube's maturity using hyperspectral technique combined with characteristic wavelength and spectral indices[J].Spectroscopy and Spectral Analysis, 2018,38(7):2 175-2 182.
[2] FANG Y M, YANG F, ZHOU Z, et al.Hyperspectral wavelength selection and integration for bruise detection of Korla pears[J].Journal of Spectroscopy, 2019:6715247.
[3] 曹晓兰, 陈星明, 张帅, 等.高光谱参数和逐步判别的苎麻品种识别[J].光谱学与光谱分析, 2018,38(5):1 547-1 551.CAO X L, CHEN X M, ZHANG S, et al.Ramie variety identification based on the hyperspectral parameters and the stepwise discriminant analysis[J].Spectroscopy and Spectral Analysis, 2018,38(5):1 547-1 551.
[4] 王磊, 覃鸿, 李静,等.近红外高光谱图像的宁夏枸杞产地鉴别[J].光谱学与光谱分析, 2020,40(4):1 270-1 275.WANG L, QIN H, LI J, et al.Geographical origin identification of Lycium barbarum using near-infrared hyperspectral imaging[J].Spectroscopy and Spectral Analysis, 2020,40(4):1 270-1 275.
[5] YE R K, CHEN Y Y, GUO Y C, et al.NIR hyperspectral imaging technology combined with multivariate methods to identify shrimp freshness[J].Applied Sciences, 2020, 10(16):5 498.
[6] 邵园园, 王永贤, 玄冠涛, 等.高光谱成像的猕猴桃货架期快速预测[J].光谱学与光谱分析, 2020,40(6):1 940-1 946.SHAO Y Y, WANG Y X, XUAN G T, et al.Hyperspectral imaging technique for estimating the shelf-life of kiwifruits[J].Spectroscopy and Spectral Analysis, 2020,40(6):1 940-1 946.
[7] 戴松松, 殷勇.基于高光谱信息特征选择的玉米霉变程度Fisher鉴别方法[J].食品与机械, 2018,34(3):68-72.DAI S S, YIN Y.Fisher discriminant analysis for moldy degrees of maize samples based on the feature selection of hyperspectral data[J].Food & Machinery, 2018,34(3):68-72.
[8] 孙宗保, 王天真, 李君奎, 等.高光谱成像的牛肉丸掺假检测[J].光谱学与光谱分析,2020,40(7):2 208-2 214.SUN Z B, WANG T Z, LI J K, et al.Detecting adulterated beef meatball using hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis, 2020,40(7):2 208-2 214.
[9] 第五鹏瑶, 卞希慧, 王姿方, 等.光谱预处理方法选择研究[J].光谱学与光谱分析, 2019, 39(9):2 800-2 806.DIWU P Y, BIAN X H, WANG Z F, et al.Study on the selection of spectral preprocessing methods[J].Spectroscopy and Spectral Analysis, 2019, 39(9):2 800-2 806.
[10] 杨倩圆, 谢定, 郑瑞娜, 等.淀粉液化液葡萄糖当量值的近红外快速检测[J].食品工业科技,2019,40(9):248-252.YANG Q Y, XIE D, ZHENG R N, et al.Fast detection of starch liquefying solution's dextrose equivalent value by near infrared spectroscopy[J].Science and Technology of Food Industry,2019,40(9):248-252.
[11] 王亚轩, 谭峰,辛元明,等.大米拉曼光谱不同预处理方法的相近产地鉴别研究[J].光谱学与光谱分析, 2021, 41(2):565-571.WANG Y X, TAN F, XIN Y M, et al.Identification of rice from similar areas with different pretreatment methods of Raman spectrum[J].Spectroscopy and Spectral Analysis, 2021, 41(2):565-571.
[12] DONG J L, GUO W C, WANG Z W, et al.Nondestructive determination of soluble solids content of 'fuji' apples produced in different areas and bagged with different materials during ripening[J].Food Analytical Methods, 2016, 9(5):1 087-1 095.
[13] WANG F, ZHAO C J, YANG G J.Development of a non-destructive method for detection of the juiciness of pear via VIS/NIR spectroscopy combined with chemometric methods[J].Foods(Basel,Switzerland), 2020, 9(12):1 778.
[14] 张娟娟, 席磊, 杨向阳, 等.砂姜黑土有机质含量高光谱估测模型构建[J].农业工程学报, 2020, 36(17):135-141.ZHANG J J, XI L, YANG X Y, et al.Construction of hyperspectral estimation model for organic matter content in Shajiang black soil[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17):135-141.
[15] 褚小立. 化学计量学方法与分子光谱分析技术[M].北京:化学工业出版社, 2011.CHU X L.Molecular Spectroscopy Analytical Technology Comblned with Chemometrics and Its Applications[M].Beijing:Chemical Industry Press, 2011.
[16] 何勇, 刘飞, 李晓丽, 等.光谱及成像技术在农业中的应用[M].北京:科学出版社, 2016.HE Y, LIU F, LI X L, et al.Spectroscopy and Imaging Technology in Agriculture[M].Beijing:Science Press,2016
[17] 张立欣, 杨翠芳, 陈杰, 等.基于变量优选的苹果糖分含量近红外光谱检测[J].食品与机械,2021,37(10):112-118.ZHANG L X, YANG C F, CHEN J, et al.Detection of sugar content in apple by near infrared spectroscopy based on variable optimization[J].Food & Machinery,2021,37(10):112-118.
[18] 宋相中, 唐果, 张录达, 等.近红外光谱分析中的变量选择算法研究进展[J].光谱学与光谱分析, 2017, 37(4):1 048-1 052.SONG X Z, TANG G, ZHANG L D, et al.Research advance of variable selection algorithms in near infrared spectroscopy analysis[J].Spectroscopy and Spectral Analysis, 2017, 37(4):1 048-1 052.
[19] LI Y, GUO Y J, LIU C, et al.SPA combined with swarm intelligence optimization algorithms for wavelength variable selection to rapidly discriminate the adulteration of apple juice[J].Food Analytical Methods, 2017, 10(6):1 965-1 971.
[20] WU Y, LI L L, LIU L, et al.Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy[J].Multimedia Tools and Applications, 2019, 78(4):4 179-4 195.
[21] 陈蓓, 郑恩让,郭拓.多种光谱变量筛选算法在红参提取近红外建模中的应用[J].光谱学与光谱分析,2021,41(8):2 443-2 449.CHEN B, ZHENG E R, GUO T.Application of various algorithms for spectral variable selection in NIRS modeling of red ginseng extraction[J].Spectroscopy and Spectral Analysis, 2021,41(8):2 443-2 449.
[22] 程介虹, 陈争光.改进的联合区间随机蛙跳算法的近红外光谱波长选择[J].光谱学与光谱分析, 2020, 40(11):3 451-3 456.CHENG J H, CHEN Z G.Wavelength selection of near-infrared spectra based on improved SiPLS-random frog algorithm[J].Spectroscopy and Spectral Analysis, 2020, 40(11):3 451-3 456.
[23] 袁凯, 张志勇, 席前, 等.3步混合变量选择策略在鸡肉近红外水分检测中的应用[J].食品与机械, 2020, 36(9):72-76;81.YUAN K, ZHANG Z Y, XI Q, et al.Research on the application of three-step hybrid variable selection strategy in chicken moisture detection by near infrared[J].Food & Machinery, 2020, 36(9):72-76;81.
[24] 马永杰, 郭俊先, 郭志明, 等.基于近红外透射光谱及多种数据降维方法的红富士苹果产地溯源[J].现代食品科技,2020,36(6):303-309.MA Y J,GUO J X, GUO Z M, et al.Origin tracing of red fuji apple based on near infrared transmission spectrum and various dimension reduction methods[J].Modern Food Science & Technology,2020,36(6):303-309.
[1] 范东翠, 刘文超, 陈慧芝, 张慜. 近红外光谱对鱼糜凝胶3D打印特性和流变特性预测的研究[J]. 食品与发酵工业, 2022, 48(9): 163-169.
[2] 程建凯, 李文钊, 刘楚海, 孙妮, 邢常辉, 阮美娟, 李沛. 酵母抽提物对发酵苹果汁风味品质的影响[J]. 食品与发酵工业, 2022, 48(7): 110-116.
[3] 袁茂翼, 崔潇文, 叶发银, 赵国华. 蒸汽爆破预处理对苹果皮渣多酚组成、表面结构及抗氧化活性的影响[J]. 食品与发酵工业, 2022, 48(7): 179-185.
[4] 葛亮, 李娜, 杨明翰, 田树革. 沙棘果高效薄层色谱分析及抗氧化能力研究[J]. 食品与发酵工业, 2022, 48(6): 263-269.
[5] 付依依, 王永霞, 宋惠月, 李旭燕, 王宗玄, 段盛林, 谭志超. 沙棘原浆苹果酸-乳酸发酵过程中理化指标及抗氧化能力的变化[J]. 食品与发酵工业, 2022, 48(5): 89--94.
[6] 苗钧魁, 张雅婷, 刘小芳, 于源, 冷凯良, 杨增光, 蒋永毅. 近红外光谱技术在南极磷虾粉水分、脂肪和蛋白质含量快速检测中的应用[J]. 食品与发酵工业, 2022, 48(4): 243-249.
[7] 曾明飞, 朱玉杰, 冯国红, 朱金艳, 刘思岐. 基于可见/近红外光谱的蓝莓新鲜度快速评价[J]. 食品与发酵工业, 2022, 48(20): 252-259.
[8] 郭阳, 史勇, 郭俊先, 李雪莲, 黄华. 近红外光谱技术结合反向区间偏最小二乘算法-连续投影算法预测哈密瓜可溶性固形物含量[J]. 食品与发酵工业, 2022, 48(2): 248-253.
[9] 张建超, 张鹏, 薛友林, 贾晓昱, 李江阔. 基于电子鼻表征霉心病苹果特征气味及无损检测模型建立[J]. 食品与发酵工业, 2022, 48(2): 267-273.
[10] 张志勇, 刘震, 周峻岗, 吕红. 微生物与发酵工艺对苹果酒品质影响的研究概述[J]. 食品与发酵工业, 2022, 48(19): 287-294.
[11] 张翔, 孙玉霞, 张将, 魏雯可, 丁燕, 汤晓宏, 韩晓梅, 林雪青, 赵新节. 五种苹果品种对苹果发酵酒香气组成及感官质量的影响[J]. 食品与发酵工业, 2022, 48(16): 203-208.
[12] 吴丹丹, 刘玥如, 何静, 明亮, 吉日木图. 不同部位驼肉营养成分检测与近红外光谱快速预测模型建立[J]. 食品与发酵工业, 2022, 48(16): 264-269.
[13] 朱金艳, 朱玉杰, 冯国红, 曾明飞, 刘思岐. 基于近红外光谱技术联合极限学习机的蓝莓贮藏品质定量模型建立[J]. 食品与发酵工业, 2022, 48(16): 270-276.
[14] 白玉, 纪海鹏, 陈存坤, 于晋泽, 张娜, 董成虎, 姜余梅. 臭氧处理对阿克苏苹果贮藏品质的影响[J]. 食品与发酵工业, 2022, 48(15): 237-242.
[15] 张佐经, 付新阳, 陈柯铭, 赵遵龙, 张仲雄, 赵娟. 融合密度与光谱特征的苹果霉心病无损检测[J]. 食品与发酵工业, 2022, 48(15): 281-287.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[3] . Effect of Protein on Quality of Chinese Rice Wine #br# [J]. Food and Fermentation Industries, 0, (): 1 .
[4] . Study on Killing Mold in Mineral Water Using Ozone[J]. Food and Fermentation Industries, 2002, 28(4): 48 .
[5] . Inhibitors of HMG-CoA Reductase and Microbial Conversion[J]. Food and Fermentation Industries, 2002, 28(6): 66 .
[6] . [J]. Food and Fermentation Industries, 2002, 28(6): 78 .
[7] Huo Xiaona,Li Xingmin,Xie Hui,Nan Qingxian,Liu Yi,Du Yan. Study of the Effect of the Natural Antioxidantion on Lipid Oxidative-controlling and Fresh-keeping in Chilled Meat[J]. Food and Fermentation Industries, 2005, 31(10): 145 .
[8] Yin Luqin,Wang Zhang. The Changes in the Cocoa Powders Before and After the Enzymatic Process[J]. Food and Fermentation Industries, 2006, 32(3): 51 .
[9] Yang Mingyan,Zhang Xiaoqi,Shen Jian,Guo Ailian,Song Jirong. Study on Extraction and Purification of Superoxide Dismutase from Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2006, 32(3): 60 .
[10] Li Jiming,Fan Xi,Ruan Shili,Xuan Yan,Wang Dong. Study on Flavour and Sensory Quality of Apple Wine[J]. Food and Fermentation Industries, 2006, 32(7): 87 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn