Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 252-259    DOI: 10.13995/j.cnki.11-1802/ts.030083
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
基于可见/近红外光谱的蓝莓新鲜度快速评价
曾明飞, 朱玉杰*, 冯国红*, 朱金艳, 刘思岐
(东北林业大学 工程技术学院,黑龙江 哈尔滨,150040)
Rapid evaluation of blueberry freshness based on visible/near-infrared spectroscopy
ZENG Mingfei, ZHU Yujie*, FENG Guohong*, ZHU Jinyan, LIU Siqi
(College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China)
下载:  HTML  PDF (3504KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 该研究针对传统人工感官评价方法的不足,基于可见/近红外光谱技术结合支持向量机(support vector machine,SVM)和随机森林(random forest,RF)建立了2种新鲜度快速评价模型,以期为蓝莓新鲜度的快速准确评价提供参考。以10 ℃恒温贮藏绿宝石蓝莓为研究对象,利用可见/近红外光谱仪采集其不同贮藏天数样品的光谱信息,综合考虑贮藏时间、外观、质量损失率、硬度、可溶性固形物和维生素C含量这6个反映蓝莓新鲜度的理化指标,计算新鲜度综合得分,将不同贮藏期的蓝莓样品划分为新鲜、次新鲜和不新鲜3个类别。光谱数据应用Savitzky-Golay(S-G)卷积平滑预处理,再采用主成分分析提取光谱特征信息。为使最佳主成分选取更合理,在使用粒子群算法寻优SVM参数时,对主成分个数在[1,20]范围进行了测试,结合5折交叉检验分类准确率最佳值,确定最佳主成分个数为5。以前5个主成分得分为输入变量,新鲜度类别为输出量,基于SVM和RF建立2种新鲜度快速评价模型。结果显示,SVM模型训练集和测试集识别准确率分别为97.78%和88%,RF模型训练集和测试集识别准确率分别为100%和84%,SVM模型优于RF模型。研究表明可见/近红外光谱技术结合主成分分析和SVM可用于蓝莓新鲜度的快速评价。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾明飞
朱玉杰
冯国红
朱金艳
刘思岐
关键词:  可见/近红外光谱  蓝莓  新鲜度  主成分分析  支持向量机  随机森林    
Abstract: Aiming at the deficiency of the traditional artificial sensory evaluation method, this paper established two rapid evaluation models of blueberry freshness by combining visible/near-infrared spectroscopy technology with a support vector machine (SVM) and random forest (RF). Turquoise blueberries stored at 10 ℃ for different days were detected by visible/near-infrared spectrometer. Six physical and chemical indexes including storage days, appearance and quality loss rate, hardness, soluble solid and vitamin C, were comprehensively considered to calculate the comprehensive score of freshness. The spectral data were preprocessed by S-G convolution smoothing, and then the spectral characteristic information was extracted by principal component analysis. To make the selection of optimal principal components more reasonable, a particle swarm optimization algorithm was used to optimize the parameters of SVM, and the number of principal components was tested within the range of [1,20]. Combined with the optimal classification accuracy value under the five-fold cross test, the optimal number of principal components was determined to be 5. The previous 5 principal component scores were input variables, and the freshness category was output quantity. Two kinds of rapid freshness evaluation models were established based on SVM and RF. The results showed that the recognition accuracy of the training set and a test set of the SVM model was 97.78% and 88% respectively, while for the RF model they were 100% and 84% respectively. These results showed that visible/near-infrared spectroscopy combined with principal component analysis and SVM could be used for the rapid evaluation of blueberry freshness.
Key words:  visible/near-infrared spectroscopy    blueberry    freshness    principal component analysis    support vector machine    random forest
收稿日期:  2021-11-15      修回日期:  2021-12-20           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 中央高校基本科研业务费专项资金项目(2572020BL01);黑龙江省自然科学基金项目(LH2020C050)
作者简介:  硕士研究生(朱玉杰教授和冯国红副教授为共同通信作者,E-mail:zhuyujie004@126.com;fgh_1980@126.com)
引用本文:    
曾明飞,朱玉杰,冯国红,等. 基于可见/近红外光谱的蓝莓新鲜度快速评价[J]. 食品与发酵工业, 2022, 48(20): 252-259.
曾明飞,朱玉杰,冯国红,et al. Rapid evaluation of blueberry freshness based on visible/near-infrared spectroscopy[J]. Food and Fermentation Industries, 2022, 48(20): 252-259.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030083  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/252
[1] 司琦, 胡文忠, 姜爱丽, 等.动态气调贮藏对蓝莓采后生理代谢品质的影响[J].包装工程, 2017, 38(17):13-18.SI Q, HU W Z, JIANG A L, et al.Effects of dynamic modified atmosphere storage on quality of physiological metabolism of the postharvest blueberry[J].Packaging Engineering, 2017, 38(17):13-18.
[2] SHEN J G, QIAO W M, CHEN H Z, et al.Application of visible/near infrared spectrometers to quickly detect the nitrogen, phosphorus, and potassium content of chemical fertilizers[J].Applied Sciences, 2021, 11(11):5 103.
[3] 高升, 王巧华, 施行, 等.便携式红提葡萄多品质可见/近红外检测仪设计与试验[J].农业机械学报, 2021, 52(2):308-319.GAO S, WANG Q H, SHI H, et al.Design and test of portable red globe grape extraction multi-quality visible/near infrared detector[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(2):308-319.
[4] 薛璐, 刘小路, 鲁晓翔, 等.近红外漫反射无损检测蓝莓硬度的研究[J].浙江农业学报, 2015, 27(9):1 646-1 651.XUE L, LIU X L, LU X X, et al.Non-destructive detection of blueberry hardness based on near-infrared diffused spectroscope[J].Acta Agriculturae Zhejiangensis,2015,27(9):1 646-1 651.
[5] 王姗姗, 孙红男, 陈健, 等.基于近红外光谱技术检测蓝莓可溶性固形物含量[J].食品工业科技, 2012, 33(1):340-341;369.WANG S S, SUN H N, CHEN J, et al.Determination of soluble solids content of blueberries with near infrared spectroscopy[J].Science and Technology of Food Industry,2012,33(1):340-341;369.
[6] 刘小路, 薛璐, 鲁晓翔, 等.近红外光谱技术快速无损检测蓝莓总黄酮、花青素的研究[J].食品工业科技, 2015, 36(16):58-61;67.LIU X L, XUE L, LU X X,et al.Fast non-destructive testing of total flavonoids and anthocyanins in blueberries by near-infrared spectroscope[J].Science and Technology of Food Industry,2015,36(16):58-61;67.
[7] 王姗姗, 李路宁, 孙红男, 等.基于近红外光谱技术构建蓝莓总酚含量的模型[J].光谱实验室, 2011, 28(6):3 169-3 174.WANG S S, LI L N, SUN H N, et al.Content model establishment of total polyphenols in blueberries by near infrared spectroscopy[J].Chinese Journal of Spectroscopy Laboratory,2011,28(6):3 169-3 174.
[8] 张凡, 姜鑫, 张存存, 等.近红外光谱结合灰色关联度分析快速综合评价猪肉新鲜度[J].河北农业大学学报, 2020, 43(1):89-95.ZHANG F, JIANG X, ZHANG C C, et al.Rapid and comprehensive evaluation of pork freshness using near infrared spectroscopy combined with grey correlation analysis[J].Journal of Hebei Agricultural University,2020,43(1):89-95.
[9] 史策, 孙立涛, 钱建平, 等.可见/近红外技术与感官评价信息融合预测冷藏条件下罗非鱼TVB-N的研究[J].食品工业科技, 2017, 38(21):268-273.SHI C, SUN L T, QIAN J P, et al.TVB-N prediction of tilapia with scales by information fusion of near infrared spectrum technology and sensory evaluation during chilled storage[J].Science and Technology of Food Industry,2017,38(21):268-273.
[10] DONG X G, ZHANG B B, DONG J, et al.Egg freshness prediction using a comprehensive analysis based on visible near infrared spectroscopy[J].Spectroscopy Letters, 2020, 53(7):512-522.
[11] 李昆. 基于近红外光谱的果蔬新鲜度分析研究[D].成都:电子科技大学, 2019.LI K.Freshness analysis and research of fruits based on near infrared spectroscopy[D].Chengdu:University of Electronic Science and Technology of China, 2019.
[12] 孙红, 梁媛媛, 田男, 等.鲜切果品新鲜度可见/近红外快速检测装置设计与实验[J].农业机械学报, 2019, 50(S1):393-398.SUN H, LIANG Y Y, TIAN N, et al.Design of freshness detection device for fresh-cut fruit using visible/near-infrared spectroscopy[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(S1):393-398.
[13] 魏文平, 华璐云, 万金庆, 等.蓝莓冰温贮藏的实验研究[J].食品工业科技, 2012, 33(13):346-348.WEI W P, HUA L Y, WAN J Q, et al.Study on ice-temperature preservation of blueberry[J].Science and Technology of Food Industry,2012,33(13):346-348.
[14] 陈杭君, 王翠红, 郜海燕, 等.不同包装方法对蓝莓采后贮藏品质和抗氧化活性的影响[J].中国农业科学, 2013, 46(6):1 230-1 236.CHEN H J, WANG C H, GAO H Y, et al.Effect of packaging on the postharvest quality and the antioxidant activity of blueberry[J].Scientia Agricultura Sinica,2013,46(6):1 230-1 236.
[15] 谢忠红, 徐焕良, 黄秋桂, 等.基于高光谱图像和深度学习的菠菜新鲜度检测[J].农业工程学报, 2019, 35(13):277-284.XIE Z H, XU H L, HUANG Q G, et al.Spinach freshness detection based on hyperspectral image and deep learning method[J].Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13):277-284.
[16] 黄绵佳, 吴岚芳.热带园艺产品采后实验原理与技术[M].北京:中国林业出版社, 2012:172-174.HUANG M J, WU L F.Postharvest Experimental Principle and Technology of Tropical Horticultural Products[M].Beijing:China Forestry Publishing House, 2012:172-174.
[17] 李洋, 张茜, 陈业莉, 等.贮运过程中振动损伤对蓝莓品质的影响[J].林业科学, 2020, 56(9):40-50.LI Y, ZHANG X, CHEN Y L, et al.Effect of vibration damage on blueberry quality during storage and transportation[J].Scientia Silvae Sinicae,2020,56(9):40-50.
[18] 许晴晴, 陈杭君, 郜海燕, 等.真空冷冻和热风干燥对蓝莓品质的影响[J].食品科学, 2014, 35(5):64-68.XU Q Q, CHEN H J, GAO H Y, et al.Effects of vacuum freeze-drying and hot-air drying on the quality of blueberry fruits[J].Food Science,2014,35(5):64-68.
[19] HERRERA-HERNÁNDEZ M G, GUEVARA-LARA F, REYNOSO-CAMACHO R, et al.Effects of maturity stage and storage on cactus berry (Myrtillocactus geometrizans) phenolics, vitamin C, betalains and their antioxidant properties[J].Food Chemistry, 2011, 129(4):1 744-1 750.
[20] 王培. 基于高光谱和图像处理技术的圆叶菠菜新鲜度检测[D].南京:南京农业大学, 2017.WANG P.Freshness detection of spinach based on hyperspectral and imaging procsess technology[D].Nanjing:Nanjing Agricultural University,2017.
[21] 郑秀艳, 黄道梅, 孟繁博, 等.基于电子鼻技术的蓝莓果实品质变化研究[J].食品安全质量检测学报, 2016, 7(9):3 642-3 649.ZHENG X Y, HUANG D M, MENG F B, et al.Quality changes analysis of blueberry fruits based on the electronic nose technology[J].Journal of Food Safety & Quality,2016,7(9):3 642-3 649.
[22] 张珏, 田海清, 张丽娜, 等.高光谱成像技术对羊肉新鲜度的无损检测[J].食品与发酵工业, 2020, 46(12):237-243.ZHANG J, TIAN H Q, ZHANG L N, et al.Non-destructive detection of lamb freshness with hyperspectral imaging technology[J].Food and Fermentation Industries,2020,46(12):237-243.
[23] LEE H, KIM M S, LEE W H, et al.Determination of the total volatile basic nitrogen (TVB-N) content in pork meat using hyperspectral fluorescence imaging[J].Sensors & Actuators B:Chemical, 2018, 259:532-539.
[24] 王凡, 李永玉, 彭彦昆, 等.基于漫透射光谱技术的番茄可溶性固形物及总糖含量的无损检测[J].光谱学与光谱分析, 2016, 36(10):3 185-3 189.WANG F, LI Y Y, PENG Y K, et al.Determination of tomato's SSC and TS based on diffuse transmittance spectroscopy[J].Spectroscopy and Spectral Analysis, 2016,36(10):3 185-3 189.
[1] 杨琦, 谢纯良, 周映君, 龚文兵, 朱作华, 许超, 彭源德. 益生菌发酵蓝莓的体外抗氧化活性分析[J]. 食品与发酵工业, 2022, 48(9): 112-116.
[2] 易媛, 赵敏惠, 左勇, 马倩, 胡琨, 黄庆. 桑葚酵素发酵过程中活性物质与抗氧化能力的相关性研究[J]. 食品与发酵工业, 2022, 48(9): 117-122.
[3] 严红光, 张建炀, 林莉, 袁华伟. 凯里米酸汤挥发性成分HS-SPME-GC-MS和HS-GC-IMS分析[J]. 食品与发酵工业, 2022, 48(9): 245-252.
[4] 覃冬杰, 吴婧, 许蓉蓉, 陈铁英, 卢艺, 陈荣珍, 刘永逸. 柳州螺蛳粉原料螺蛳中五种重金属元素的测定及安全性评价[J]. 食品与发酵工业, 2022, 48(8): 276-280.
[5] 张鹏, 于弘弢, 李春媛, 贾晓昱, 薛友林, 李江阔. 基于主成分分析的微环境气调对蓝莓贮后货架品质的影响[J]. 食品与发酵工业, 2022, 48(7): 186-194.
[6] 张卜升, 高杏, 闫昕, 崔丹瑶, 吕晓彤, 林良才, 张翠英. 基于GC-IMS技术分析石榴果酒酿制过程中挥发性风味成分的变化[J]. 食品与发酵工业, 2022, 48(7): 252-257.
[7] 卓俊纳, 吴卫宇, 何霜, 赵金松. 基于ICP-MS结合化学计量学的不同品牌酱香型白酒鉴别方法[J]. 食品与发酵工业, 2022, 48(7): 269-275.
[8] 江波, 黄建华. 基于营养元素的茎瘤芥主成分分析和产地溯源[J]. 食品与发酵工业, 2022, 48(6): 46-51.
[9] 杨惠茹, 郭军, 古斯愣图, 王越男, 张春华, 孙海洲. 六种家畜乳氨基酸特征聚类分析[J]. 食品与发酵工业, 2022, 48(6): 233-240.
[10] 程玉娇, 李贵节, 欧阳祝, 吴厚玖, 梁国鲁, 王华. 基于GC-MS/PFPD对不同完熟期克里曼丁橘汁风味组分分析[J]. 食品与发酵工业, 2022, 48(6): 241-249.
[11] 罗小叶, 赵皓静, 班世栋, 王晓丹. 顶空固相微萃取-气质联用法对不同多效价复合配方栽培香菇子实体挥发性风味成分分析[J]. 食品与发酵工业, 2022, 48(6): 250-256.
[12] 刘建华, 曾倩华, 徐霞, 丁玉庭. 鱼体新鲜度新型检测方法的研究进展[J]. 食品与发酵工业, 2022, 48(6): 281-289.
[13] 范东翠, 陈慧芝, 郭超凡, 张慜. 蓝莓果粉-马铃薯淀粉混凝体系的3D打印特性[J]. 食品与发酵工业, 2022, 48(5): 200-205.
[14] 卫春会, 郑自强, 李浩, 任志强, 黄治国, 邓杰, 董玲. 浓香型白酒酒醅发酵过程中风味物质时空差异分析[J]. 食品与发酵工业, 2022, 48(5): 240-246.
[15] 施思, 乔宗伟, 郑佳, 罗青春, 廖勤俭, 刘多涛. 宏观气候条件下固态发酵糟醅中杂醇油生成规律的分析[J]. 食品与发酵工业, 2022, 48(4): 97-101.
[1] LI Xiao-min et a. The influence of feruloyl esterase on filterability of wort[J]. Food and Fermentation Industries, 2017, 43(11): 30 -33 .
[2] LIU Wen-ying et al. Protective effect of wheat oligopeptides and glutamine against gastrointestinal mucosa damage in rats[J]. Food and Fermentation Industries, 2017, 43(11): 51 -57 .
[3] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[4] WANG An-feng et al. Optimization of hydrolysis process of pinctadafucata by response surface method[J]. Food and Fermentation Industries, 2017, 43(11): 165 .
[5] ZHOU Xin-ya et al. Effect of pH on the functional properties of rabbit myofibrillar protein[J]. Food and Fermentation Industries, 2017, 43(11): 172 .
[6] YUAN Xu, WU Xiao-yu, LI Wei-li, WANG Qing-hui, LIU Ping, LIN Hong-bin, CHE Zhen-ming, WU Tao. Evaluation of nutrition, polyphenols and their antioxidant activities in Pixian bean paste[J]. Food and Fermentation Industries, 2018, 44(9): 270 -274 .
[7] . Preparation of Resistant Starch with Enzymes Process[J]. Food and Fermentation Industries, 2002, 28(5): 6 .
[8] . Study on the Properties of Superoxide Dismutase from Allium sativum Plasma[J]. Food and Fermentation Industries, 2002, 28(5): 32 .
[9] . Oxidative Decomposition of Cholesterol in Coexisting Purified Fish Oil Triglycerides [J]. Food and Fermentation Industries, 2002, 28(8): 22 .
[10] . [J]. Food and Fermentation Industries, 2004, 30(6): 58 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn