Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 293-299    DOI: 10.13995/j.cnki.11-1802/ts.030316
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
基于共价/非共价结合的蛋白质与花色苷相互作用研究进展
袁婷婷1, 周子艺1, 赵吉春1, 李富华1, 曾凯芳1,2, 明建1,2*
1(西南大学 食品科学学院,重庆,400715)
2(西南大学,食品贮藏与物流研究中心,重庆,400715)
The interactions between proteins and anthocyanins based on covalent/ non-covalent binding: A review
YUAN Tingting1, ZHOU Ziyi1, ZHAO Jichun1, LI Fuhua1, ZENG Kaifang1,2, MING Jian1,2*
1(College of Food Science, Southwest University, Chongqing 400715, China)
2(Research Center of Food Storage and Logistics, Southwest University, Chongqing 400715, China)
下载:  HTML  PDF (1398KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 蛋白质是生命活动的物质基础,是食品营养的重要成分。花色苷是广泛存在于自然界的植物色素,具有抗氧化、抗炎、抗衰老、抗癌等生理活性。花色苷对环境十分敏感,容易发生降解或分解,但通过与蛋白质的共价和非共价相互作用可以改善这一现象,同时也可以改善蛋白质的功能特性和营养品质。该文综述了花色苷与蛋白质的相互作用形式和影响因素,分别分析了二者的相互作用对花色苷和蛋白质性质的影响,为开发富含花青素的蛋白质食品或功能性配料提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁婷婷
周子艺
赵吉春
李富华
曾凯芳
明建
关键词:  花色苷  蛋白质  相互作用    
Abstract: Protein is the material basis of life activities and an important component of food nutrition. Anthocyanins are plant pigments that are widely found in nature. They have anti-oxidation, anti-inflammatory, anti-ageing, anti-cancer, and other physiological activities. Anthocyanins are very sensitive to the environment and are prone to degradation or decomposition. However, covalent and non-covalent interactions with proteins can improve this phenomenon, as well as the functional properties and nutritional quality of proteins. This article reviewed the interaction forms and influencing factors of anthocyanins and proteins and analyzed the effects of their interactions on the properties of anthocyanins and proteins, providing a theoretical basis for the development of anthocyanin-rich protein foods or functional ingredients.
Key words:  anthocyanin    protein    interaction
收稿日期:  2021-12-03      修回日期:  2021-01-05           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 国家重点研发计划专项课题(2019YFD1002300)
作者简介:  硕士研究生(明建教授为通信作者,E-mail:mingjian1972@163.com)
引用本文:    
袁婷婷,周子艺,赵吉春,等. 基于共价/非共价结合的蛋白质与花色苷相互作用研究进展[J]. 食品与发酵工业, 2022, 48(20): 293-299.
袁婷婷,周子艺,赵吉春,et al. The interactions between proteins and anthocyanins based on covalent/ non-covalent binding: A review[J]. Food and Fermentation Industries, 2022, 48(20): 293-299.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030316  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/293
[1] LI X, XU J M, TANG X, et al.Anthocyanins inhibit trastuzumab-resistant breast cancer in vitro and in vivo[J].Molecular Medicine Reports, 2016, 13(5):4 007-4 013.
[2] 刘建国, 司旭, 田金龙, 等.花色苷的营养吸收及稳定性研究进展[J].中国果菜, 2020, 40(5):7-13.LIU J G, SI X, TIAN J L, et al.Advances in nutritional absorption and stabilization of anthocyanins[J].China Fruit & Vegetable, 2020, 40(5):7-13.
[3] ERTAN K, TÜRKYιLMAZ M, ÖZKAN M.Effects of natural copigment sources in combination with sweeteners on the stability of anthocyanins in sour cherry nectars[J].Food Chemistry, 2019, 294:423-432.
[4] XIE L H, SU H M, SUN C D, et al.Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms[J].Trends in Food Science & Technology, 2018, 72:13-24.
[5] BUENO J M, SÁEZ-PLAZA P, RAMOS-ESCUDERO F, et al.Analysis and antioxidant capacity of anthocyanin pigments.part II:Chemical structure, color, and intake of anthocyanins[J].Critical Reviews in Analytical Chemistry, 2012, 42(2):126-151.
[6] SUI X N, ZHANG T Y, JIANG L Z.Soy protein:Molecular structure revisited and recent advances in processing technologies[J].Annual Review of Food Science and Technology, 2021, 12:119-147.
[7] LANG Y X, GAO H Y, TIAN J L, et al.Protective effects of α-casein or β-casein on the stability and antioxidant capacity of blueberry anthocyanins and their interaction mechanism[J].LWT, 2019, 115:108434.
[8] HE W J, MU H B, LIU Z M, et al.Effect of preheat treatment of milk proteins on their interactions with cyanidin-3-O-glucoside[J].Food Research International, 2018, 107:394-405.
[9] ZANG Z H, CHOU S R, TIAN J L, et al.Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins:A mechanistic and in vitro simulation study[J].Food Chemistry, 2021, 336:127700.
[10] NAS J S.Exploring the binding affinity and non-covalent interactions of anthocyanins with aging-related enzymes through molecular docking[J].Journal of Health Research, 2020, 24:9-19.
[11] QUAN T H, BENJAKUL S, SAE-LEAW T, et al.Protein-polyphenol conjugates:Antioxidant property, functionalities and their applications[J].Trends in Food Science & Technology, 2019, 91:507-517.
[12] TANTOUSH Z, STANIC D, STOJADINOVIC M, et al.Digestibility and allergenicity of β-lactoglobulin following laccase-mediated cross-linking in the presence of sour cherry phenolics[J].Food Chemistry, 2011, 125(1):84-91.
[13] SUI X N, SUN H B, QI B K, et al.Functional and conformational changes to soy proteins accompanying anthocyanins:Focus on covalent and non-covalent interactions[J].Food Chemistry, 2018, 245:871-878.
[14] CAHYANA Y, GORDON M H.Interaction of anthocyanins with human serum albumin:Influence of pH and chemical structure on binding[J].Food Chemistry, 2013, 141(3):2 278-2 285.
[15] MIYAGUSUKU-CRUZADO G, JIMÉNEZ-FLORES R, GIUSTI M M.Whey protein addition and its increased light absorption and tinctorial strength of model solutions colored with anthocyanins[J].Journal of Dairy Science, 2021, 104(6):6 449-6 462.
[16] 张娇娇. 食用花色苷与常见内源性蛋白质相互作用研究[D].杭州:浙江大学, 2019.ZHANG J J.Study on interactions between dietary anthocyanins and common endogenous proteins[D].Hangzhou:Zhejiang University, 2019.
[17] BOHIN M C, VINCKEN J P, VAN DER HIJDEN H T W M, et al.Efficacy of food proteins as carriers for flavonoids[J].Journal of Agricultural and Food Chemistry, 2012, 60(16):4 136-4 143.
[18] 赵焕焦. 黑米花色苷与三种蛋白质相互作用的研究[D].天津:天津科技大学, 2017.ZHAO H J.Study on the interaction of black rice anthocyanins with three proteins[D].Tianjin:Tianjin University of Science & Technology, 2017.
[19] CHEN Z Q, WANG C, GAO X D, et al.Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts[J].Food Chemistry, 2019, 271:266-273.
[20] ARROYO-MAYA I J, CAMPOS-TERÁN J, HERNÁNDEZ-ARANA A, et al.Characterization of flavonoid-protein interactions using fluorescence spectroscopy:Binding of pelargonidin to dairy proteins[J].Food Chemistry, 2016, 213:431-439.
[21] FU X Z, BELWAL T, HE Y H, et al.Interaction and binding mechanism of cyanidin-3-O-glucoside to ovalbumin in varying pH conditions:A spectroscopic and molecular docking study[J].Food Chemistry, 2020, 320:126616.
[22] ZHOU R, DONG X Y, SONG L L, et al.Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions[J].Journal of Luminescence, 2014, 155:244-250.
[23] TORRES A, AGUILAR-OSORIO G, CAMACHO M, et al.Characterization of polyphenol oxidase from purple sweet potato (Ipomoea batatas L.Lam) and its affinity towards acylated anthocyanins and caffeoylquinic acid derivatives[J].Food Chemistry, 2021, 356:129709.
[24] STÜBLER A S, LESMES U, JUADJUR A, et al.Impact of pilot-scale processing (thermal, PEF, HPP) on the stability and bioaccessibility of polyphenols and proteins in mixed protein- and polyphenol-rich juice systems[J].Innovative Food Science & Emerging Technologies, 2020, 64:102426.
[25] 周瑞, 董学艳, 景浩.不同溶液中牛血清白蛋白与花青素相互作用特征及抗氧化性[J].食品科学, 2013, 34(15):11-16.ZHOU R, DONG X Y, JING H.Characterization of bovine serum albumin/anthocyanin interaction and antioxidant activity in different solutions[J].Food Science, 2013, 34(15):11-16.
[26] QIN X G, YUAN D, WANG Q, et al.Maillard-reacted whey protein isolates enhance thermal stability of anthocyanins over a wide pH range[J].Journal of Agricultural and Food Chemistry, 2018, 66(36):9 556-9 564.
[27] CHUNG C, ROJANASASITHARA T, MUTILANGI W, et al.Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation[J].Food Research International, 2015, 76:761-768.
[28] QUAN W, HE W, QIE X J, et al.Effects of β-cyclodextrin, whey protein, and soy protein on the thermal and storage stability of anthocyanins obtained from purple-fleshed sweet potatoes[J].Food Chemistry, 2020, 320:126655.
[29] LANG Y X, LI E H, MENG X J, et al.Protective effects of bovine serum albumin on blueberry anthocyanins under illumination conditions and their mechanism analysis[J].Food Research International, 2019, 122:487-495.
[30] WU J E, GUAN Y G, ZHONG Q X.Yeast mannoproteins improve thermal stability of anthocyanins at pH 7.0[J].Food Chemistry, 2015, 172:121-128.
[31] 赵焕焦, 吕晓玲, 王梦姝, 等.光谱法研究黑米花色苷与酪蛋白的相互作用[J].中国食品添加剂, 2017(1):121-127.ZHAO H J, LV X L, WANG M S, et al.Studies on the interaction between casein and black rice anthocyanin by spectroscopic methodology[J].China Food Additives, 2017(1):121-127.
[32] LI J, WANG B X, HE Y, et al.A review of the interaction between anthocyanins and proteins[J].Food Science and Technology International, 2021, 27(5):470-482.
[33] OANCEA A M, HASAN M, VASILE A M, et al.Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate[J].LWT, 2018, 95:129-134.
[34] KONG F H, KANG S M, AN Y J, et al.The effect of non-covalent interactions of xylitol with whey protein and casein on structure and functionality of protein[J].International Dairy Journal, 2020, 111:104841.
[35] YI J H, QIU M Y, LIU N, et al.Inhibition of lipid and protein oxidation in whey-protein-stabilized emulsions using a natural antioxidant:Black rice anthocyanins[J].Journal of Agricultural and Food Chemistry, 2020, 68(37):10 149-10 156.
[36] JIANG L Z, LIU Y J, LI L, et al.Covalent conjugates of anthocyanins to soy protein:Unravelling their structure features and in vitro gastrointestinal digestion fate[J].Food Research International, 2019, 120:603-609.
[37] ZHANG Y, CHEN S, QI B K, et al.Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility[J].Food Research International, 2018, 106:619-625.
[38] YANG Y, ZHANG J L, SHEN L H, et al.Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase[J].Food Chemistry, 2021, 359:129934.
[39] TANG L, LI S, BI H N, et al.Interaction of cyanidin-3-O-glucoside with three proteins[J].Food Chemistry, 2016, 196:550-559.
[40] MENG Y Y, HAO L L, TAN Y, et al.Noncovalent interaction of cyanidin-3-O-glucoside with whey protein isolate and β-lactoglobulin:Focus on fluorescence quenching and antioxidant properties[J].LWT, 2021, 137:110386.
[1] 邵婷, 冯鑫, 吕天艺, 王洪霞, 马良, 戴宏杰, 张宇昊. 基于蛋白质材料的3D打印技术研究现状及其应用[J]. 食品与发酵工业, 2022, 48(8): 296-303.
[2] 张作达, 王琴飞, 吴若娜, 牛晓磊, 张振文. 木薯叶片多肽的制备与抗氧化功能研究[J]. 食品与发酵工业, 2022, 48(7): 146-153.
[3] 张翔宇, 王瑷琳, 刘祉妤, 王笑涵, 张思敏, 申宇航, 张竹君, 唐越. 鱼皮明胶-海藻酸钠相互作用及其规律[J]. 食品与发酵工业, 2022, 48(7): 160-165.
[4] 李舒婷, 王琦, 李正一, 伍久林, 陈雯, 肖怡倩, 郑亚凤. 纤维素结合多酚的作用机制及其对多酚特性影响的研究进展[J]. 食品与发酵工业, 2022, 48(7): 283-289.
[5] 高文婧, 雷桥, 吴浩, 曹庆龙, 王滋. 低温低功率等离子体处理对复合蛋白基薄膜结构性能的影响[J]. 食品与发酵工业, 2022, 48(6): 103-109.
[6] 唐学超, 魏春, 袁围, 孙杰. 细胞凋亡调控因子BCL-2促进工程酵母合成橙花叔醇[J]. 食品与发酵工业, 2022, 48(4): 10-15.
[7] 李平, 张志, 周辉, 周凯, 王兆明, 马晓钟, 徐宝才. 干腌火腿中肽的形成机理研究进展[J]. 食品与发酵工业, 2022, 48(4): 294-300.
[8] 冀晓龙, 尹明松, 赵阳, 曹腾正, 高洁, 刘延奇. 菊粉-小麦淀粉复配体系理化特性及相互作用[J]. 食品与发酵工业, 2022, 48(3): 135-140.
[9] 太敏瑞, 蔡泓滢, 李瑞, 陈建平, 贾学静, 宋兵兵, 刘晓菲, 唐振冬, 吉宏武, 钟赛意. 多糖-蛋白质复合水凝胶研究进展[J]. 食品与发酵工业, 2022, 48(3): 291-297.
[10] 斯梦, 孔祥珍, 张彩猛, 华欲飞. 不同糖类和蛋白质浓度对核桃乳发酵及其感官特性的影响[J]. 食品与发酵工业, 2022, 48(21): 111-117.
[11] 梁宸, 陈建洋, 谢新华, 忤心军, 张波波, 徐超, 艾志录. γ-聚谷氨酸对豌豆蛋白酸性环境下稳定性的影响[J]. 食品与发酵工业, 2022, 48(21): 167-173.
[12] 左惠心, 温彬, 罗欣, 朱立贤, 牛乐宝, 张一敏, 毛衍伟. 宰后不同部位牛肉保水性变化和蛋白质特性研究[J]. 食品与发酵工业, 2022, 48(2): 45-51.
[13] 于嘉淇, 王启明, 李薇雨, 徐洪峰, 雷小娟, 赵吉春, 雷琳, 明建. 玉米淀粉对麦醇溶蛋白凝胶特性的影响[J]. 食品与发酵工业, 2022, 48(2): 131-138.
[14] 张强, 刘昊, 马玉涵, 孙玉军, 王松华. 美拉德反应改性蛋白质/肽的研究进展[J]. 食品与发酵工业, 2022, 48(18): 306-313.
[15] 李春燕, 熊智强, 王光强, 宋馨, 杨昳津, 张汇, 艾连中, 夏永军. 乳酸菌附属发酵剂的筛选及其对干酪浆蛋白水解的影响[J]. 食品与发酵工业, 2022, 48(17): 129-135.
[1] LI Xiao-min et a. The influence of feruloyl esterase on filterability of wort[J]. Food and Fermentation Industries, 2017, 43(11): 30 -33 .
[2] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[3] WANG An-feng et al. Optimization of hydrolysis process of pinctadafucata by response surface method[J]. Food and Fermentation Industries, 2017, 43(11): 165 .
[4] WU Peng et al. The development of microwave cooked carrot chips based on domestic microwave oven[J]. Food and Fermentation Industries, 2017, 43(11): 180 .
[5] JI Xiao-kai et al. Research advance in the effect of electric alstimulation on beef quality[J]. Food and Fermentation Industries, 2017, 43(11): 244 .
[6] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[7] YUAN Xu, WU Xiao-yu, LI Wei-li, WANG Qing-hui, LIU Ping, LIN Hong-bin, CHE Zhen-ming, WU Tao. Evaluation of nutrition, polyphenols and their antioxidant activities in Pixian bean paste[J]. Food and Fermentation Industries, 2018, 44(9): 270 -274 .
[8] . The Absorption of Crosslinked PVP to Tea Polyphenols[J]. Food and Fermentation Industries, 2002, 28(4): 7 .
[9] . [J]. Food and Fermentation Industries, 2002, 28(5): 74 .
[10] . The Optimization of Reproducible Medium for Bifidobacterium adolescent[J]. Food and Fermentation Industries, 2002, 28(7): 15 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn