Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 70-77    DOI: 10.13995/j.cnki.11-1802/ts.030432
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
底物亲和设计提高腈水解酶Nit6803活性
刘欣悦, 韩来闯, 刘中美*
(江南大学 生物工程学院,江苏 无锡,214122)
Substrate affinity design for the improvement of nitrilase Nit6803 activity
LIU Xinyue, HAN Laichuang, LIU Zhongmei*
(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (7325KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 腈水解酶(Nitrilase,EC 3.5.5.1),是一类可以将腈类物质一步水解为羧酸的酶,是多种重要大宗化工品、药物中间体的理想生物催化剂。但是天然酶活性低、热稳定性差限制了其在工业上的应用。近年来通过蛋白质改造来解决酶活性与稳定性间的“trade-off”效应以提升催化性能的研究较多。该研究提出一种酶-底物亲和设计改造策略,以来源于Syechocystis sp.PCC6803的腈水解酶Nit6803作为改造对象,结合基于Rosetta的Cartesian_ddG方法和基于自由能微扰的酶-底物亲和力计算,对Nit6803的催化口袋进行单点突变及组合突变设计。基于此获得了活性显著提升的单点突变体F64Y、W170G,及组合突变体F64Y/W170G。其中,F64Y/W170G的比酶活力达到(22.48±0.64) U/mg,为野生型的4.56倍,且该突变体的热稳定性不低于野生型。通过分批补加3-氰基吡啶进行全细胞催化表明F64Y/W170G催化能力强于野生型,在达到相同转化率情况下极大的缩短了催化时间。结果表明,该研究提出的设计策略可以有效提升酶的活性而不影响其稳定性,为酶的理性设计改造提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘欣悦
韩来闯
刘中美
关键词:  腈水解酶  酶-底物亲和  理性设计  酶活力    
Abstract: Nitrilase (EC 3.5.5.1) is an ideal biocatalyst for a variety of essential bulk chemicals and pharmaceutical intermediates, due to its capability to catalyze nitrile to carboxylic acid with high stereoselectivity under mild reaction conditions. However, the low activity and poor thermal stability of natural enzymes still limit its industrial application. In recent years, it has been a research hotspot to break through the bottleneck of ‘trade-off' between activity and stability through protein engineering. This study proposes a novel enzyme-substrate affinity design strategy. The nitrilase Nit6803 derived from Syechocystis sp. PCC6803 was improved in activity through the rational design combining the Cartesian_ddG method in Rosetta suite and the enzyme-substrate affinity calculation based on free energy perturbation. The single-point mutants F64Y, W170G, and combination mutant F64Y/W170G with significantly improved activity were obtained. Among them, the specific enzyme activity of F64Y/W170G reached (22.48±0.64) U/mg, which was 4.56 times that of the wild type, and the thermal stability maintained. Whole-cell catalysis by adding 3-cyanopyridine in batches showed that F64Y/W170G had stronger catalytic ability than wild type, and greatly shortened the catalysis time when reaching the same conversion rate. The results demonstrated that the engineering strategy proposed in this study can effectively enhance the enzyme activity without decreasing its stability, which provides a new idea for the rational design of enzymes.
Key words:  nitrilase    enzyme-substrate affinity    rational design    enzyme activity
收稿日期:  2021-12-13      修回日期:  2022-01-26           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 江苏省自然科学基金(BK20210470);中国博士后科学基金(2021M701461)
作者简介:  硕士研究生(刘中美教授为通信作者,E-mail:zliu@jiangnan.edu.cn)
引用本文:    
刘欣悦,韩来闯,刘中美. 底物亲和设计提高腈水解酶Nit6803活性[J]. 食品与发酵工业, 2022, 48(20): 70-77.
刘欣悦,韩来闯,刘中美. Substrate affinity design for the improvement of nitrilase Nit6803 activity[J]. Food and Fermentation Industries, 2022, 48(20): 70-77.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030432  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/70
[1] CHHIBA-GOVINDJEE V P, VAN DER WESTHUYZEN C W, BODE M L, et al.Bacterial nitrilases and their regulation[J].Applied Microbiology and Biotechnology, 2019, 103(12):4 679-4 692.
[2] JEZ J M.Plant nitrilase:A new job for an old enzyme[J].The Biochemical Journal, 2019, 476(7):1 105-1 107.
[3] ATALAH J, CÁCERES-MORENO P,ESPINA G,et al.Thermophiles and the applications of their enzymes as new biocatalysts[J].Bioresource Technology, 2019, 280:478-488.
[4] SHEN J D, CAI X, LIU Z Q, et al.Nitrilase:A promising biocatalyst in industrial applications for green chemistry[J].Critical Reviews in Biotechnology, 2021, 41(1):72-93.
[5] GONG J S, SHI J S, LU Z H M, et al.Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis:Recent insights and promises[J].Critical Reviews in Biotechnology, 2017, 37(1):69-81.
[6] DESANTIS G, ZHU Z L, GREENBERG W A, et al.An enzyme library approach to biocatalysis:Development of nitrilases for enantioselective production of carboxylic acid derivatives[J].Journal of the American Chemical Society, 2002, 124(31):9 024-9 025.
[7] LI G Y, MARIA-SOLANO M A, ROMERO-RIVERA A, et al.Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution[J].Chemical Communications, 2017, 53(68):9 454-9 457.
[8] YU H, DALBY P A.Exploiting correlated molecular-dynamics networks to counteract enzyme activity-stability trade-off[J].Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52):E12 192-E12 200.
[9] 焦标. 腈水解酶分子改造及在R-扁桃酸生产中的应用[D].杭州:浙江工业大学, 2016.JIAO B.Engineering of nitrilase and its application in biosynthesis of R-mandelic acid[D].Hangzhou:Zhejiang University of Technology, 2016.
[10] SCHREINER U, HECHER B,OBROWSKY S,et al.Directed evolution of Alcaligenes faecalis nitrilase[J].Enzyme and Microbial Technology, 2010, 47(4):140-146.
[11] XUE Y P, YANG Y K, LYU S Z, et al.High-throughput screening methods for nitrilases[J].Applied Microbiology and Biotechnology, 2016, 100(8):3 421-3 432.
[12] JUMPER J, EVANS R, PRITZEL A, et al.Highly accurate protein structure prediction with AlphaFold[J].Nature, 2021, 596(7 873):583-589.
[13] LEMAN J K, WEITZNER B D, LEWIS S M, et al.Macromolecular modeling and design in Rosetta:Recent methods and frameworks[J].Nature Methods, 2020, 17(7):665-680.
[14] BENDER B J, GAHBAUER S, LUTTENS A, et al.A practical guide to large-scale docking[J].Nature Protocols, 2021, 16(10):4 799-4 832.
[15] OLLITRAULT P J, MIESSEN A, TAVERNELLI I.Molecular quantum dynamics:A quantum computing perspective[J].Accounts of Chemical Research, 2021, 54(23):4 229-4 238.
[16] HILDEBRAND P W, ROSE A S, TIEMANN J K S.Bringing molecular dynamics simulation data into view[J].Trends in Biochemical Sciences, 2019, 44(11):902-913.
[17] 汤晓芒. 通过优化蛋白表面的电荷分布来对腈水解酶的热稳定性进行理性设计[D].上海:华东理工大学, 2012.TANG X M.Rational stabilization of a nitrilase through optimization of protein's surface charge distribution[D].Shanghai:East China University of Science and Technology, 2012.
[18] YU S S, LI J L, YAO P Y, et al.Inverting the enantiopreference of Nitrilase-catalyzed desymmetric hydrolysis of prochiral dinitriles by reshaping the binding pocket with a mirror-image strategy[J].Angewandte Chemie, 2021,60(7):3 679-3 684.
[19] ZHANG Q, LU X, ZHANG Y, et al.Development of a robust nitrilase by fragment swapping and semi-rational design for efficient biosynthesis of pregabalin precursor[J].Biotechnology and Bioengineering, 2020, 117(2):318-329.
[20] JINDAL G, SLANSKA K, KOLEV V,et al.Exploring the challenges of computational enzyme design by rebuilding the active site of a dehalogenase[J].Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2):389-394.
[21] YU S, YAO P, LI J, et al.Improving the catalytic efficiency and stereoselectivity of a nitrilase from Synechocystis sp.PCC6803 by semi-rational engineering en route to chiral γ-amino acids[J].Catalysis Science & Technology, 2019, 9(6):1 504-1 510.
[22] ZHANG L J, YIN B, WANG C H, et al.Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803[J].Journal of Structural Biology, 2014, 188(2):93-101.
[23] PARK H, BRADLEY P, GREISEN P Jr, et al.Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules[J].Journal of Chemical Theory and Computation, 2016, 12(12):6 201-6 212.
[24] LIU Y, HAN L, CHENG Z H, et al.Enzymatic biosynthesis of L-2-aminobutyric acid by glutamate mutase coupled with L-aspartate-β-decarboxylase using L-glutamate as the sole substrate[J].ACS Catalysis, 2020, 10(23):13 913-13 917.
[1] 张苇苗, 程中一, 周丽, 周哲敏. 腈水合酶底物通道入口调控催化活性的关键氨基酸位点的定位与改造[J]. 食品与发酵工业, 2022, 48(9): 8-13.
[2] 陈志超, 王金多, 徐庆阳. 微量元素与生长因子对L-苯丙氨酸发酵的影响[J]. 食品与发酵工业, 2022, 48(8): 82-89.
[3] 朱丽萍, 杨强, 江威, 李群, 林斌, 唐洁, 陈申习. 清香型小曲白酒霉菌菌群解析与酶活特性研究[J]. 食品与发酵工业, 2022, 48(7): 70-77.
[4] 龚大春, 王德林, 万里, 刘润, 吕育财, 罗华军, 宋婷. 近平滑假丝酵母ATCC 7330羰基还原酶CpCR突变体酶的稳定性研究[J]. 食品与发酵工业, 2022, 48(2): 59-64.
[5] 梁清文, 方芳. 糖耗速率对浓香型白酒发酵过程异戊醇合成的影响[J]. 食品与发酵工业, 2022, 48(15): 33-40.
[6] 冯程程, 蔡子哲, 陈琼, 欧仕益, 谢小冬, 汪勇, MARTIN J T REANEY, 张宁. 产β-葡萄糖苷酶乳酸菌益生特性研究[J]. 食品与发酵工业, 2022, 48(15): 85-90.
[7] 刘小敏, 谢翔云, 林良才, 张煜行, 肖冬光. 黑曲霉脂肪酶tabI酶学性质及乳酸乙酯合成能力的研究[J]. 食品与发酵工业, 2022, 48(10): 9-15.
[8] 杨菊, 毛银, 黄晓强, 周胜虎, 邓禹. 计算设计改造Thermobifida fusca 5-羧基-2-戊烯酰-辅酶A还原酶促进己二酸生产[J]. 食品与发酵工业, 2021, 47(7): 1-7.
[9] 李泽洋, 伍时华, 龙秀锋, 吴军, 易弋. 米酒糖化菌的分离筛选鉴定及其性能研究[J]. 食品与发酵工业, 2021, 47(4): 188-194.
[10] 李静竹, 胡梦君, 张建华. 蛋白质谷氨酰胺酶的重组表达与发酵条件优化[J]. 食品与发酵工业, 2021, 47(3): 294-301.
[11] 梅漫莉, 孙鹏杰, 徐庆阳. 利用膜透析技术提高腺苷发酵产量[J]. 食品与发酵工业, 2021, 47(23): 30-37.
[12] 苗周迪, 陈希文, 彭政, 冒鑫哲, 堵国成, 张娟. 基于理性设计提高枯草芽孢杆菌角蛋白酶的热稳定性[J]. 食品与发酵工业, 2021, 47(19): 50-56.
[13] 商玉婷, 龚劲松, 王顺治, 陆震鸣, 李恒, 史劲松, 许正宏. 腈水解酶重组菌的培养工艺及磁性固定化研究[J]. 食品与发酵工业, 2021, 47(16): 128-134.
[14] 杜建辉, 刘松, 陆信曜, 陈坚. 构建分子内二硫键提升谷氨酰胺转氨酶热稳定性[J]. 食品与发酵工业, 2021, 47(15): 1-8.
[15] 刘向丽, 李佥, 田晶, 费旭, 曾超, 张楠, 王勋. 柑橘果渣发酵产柚苷酶的工艺优化及固定化研究[J]. 食品与发酵工业, 2020, 46(5): 128-133.
[1] BAN Jia et al . Use of molasses for DHA production by Schizochytrium sp.[J]. Food and Fermentation Industries, 2017, 43(11): 39 -43 .
[2] LIU Wen-ying et al. Protective effect of wheat oligopeptides and glutamine against gastrointestinal mucosa damage in rats[J]. Food and Fermentation Industries, 2017, 43(11): 51 -57 .
[3] TIAN Xue-zhi et al. Effect of high hydrostatic pressure treatment on the functional properties of konjac glucomannan / soybean protein composite sol[J]. Food and Fermentation Industries, 2017, 43(11): 153 .
[4] WANG An-feng et al. Optimization of hydrolysis process of pinctadafucata by response surface method[J]. Food and Fermentation Industries, 2017, 43(11): 165 .
[5] YANG Zhuo et al. Genesequencing andtraditionalmicrobialcultureforthedetectionof aerogeninswelledpacking soy sauce[J]. Food and Fermentation Industries, 2017, 43(11): 197 .
[6] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[7] . [J]. Food and Fermentation Industries, 2002, 28(4): 10 .
[8] Huo Xiaona,Li Xingmin,Xie Hui,Nan Qingxian,Liu Yi,Du Yan. Study of the Effect of the Natural Antioxidantion on Lipid Oxidative-controlling and Fresh-keeping in Chilled Meat[J]. Food and Fermentation Industries, 2005, 31(10): 145 .
[9] XU Jie-qiong,CHEN Sai-sai,ZENG Mao-mao,QIN Fang,HE Zhi-yong,CHEN Jie. Effects of thermal processing on the bio-accessibility of tea polyphenols in tea milk[J]. Food and Fermentation Industries, 2017, 43(9): 109 .
[10] . The Effect of Different Proteinases on the Solubility of Non-sugar Soy Milk Powder[J]. Food and Fermentation Industries, 2005, 31(11): 117 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn