Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 188-195    DOI: 10.13995/j.cnki.11-1802/ts.030523
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
高山被孢霉谷氨酸代谢调控产脂的初步研究
蔡毅博, 陈海琴*, 张灏, 陈卫
(江南大学 食品学院,江苏 无锡,214122)
Preliminary study on lipid production of Mortierella alpina regulated by glutamate metabolism
CAI Yibo, CHEN Haiqin*, ZHANG Hao, CHEN Wei
(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (1819KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解析谷氨酸代谢对产油丝状真菌高山被孢霉(Mortierella alpina)脂质合成的影响,该文考察了补加谷氨酸条件下高山被孢霉谷氨酸代谢相关酶的基因转录水平、酶活性水平和总脂产量等指标。结果显示,补加谷氨酸显著影响了高山被孢霉胞内谷氨酸代谢相关基因的转录水平,NADP+型谷氨酸脱氢酶和谷氨酸脱羧酶活性的增加为脂肪酸从头合成提供了充足的还原力,这使得细胞总脂含量提升了3 g/L(约占干重比例10%)。该研究为氨基酸介导的微生物脂质合成机制解析提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡毅博
陈海琴
张灏
陈卫
关键词:  高山被孢霉  谷氨酸代谢  脂质  转录  谷氨酸脱氢酶  谷氨酸脱羧酶    
Abstract: This study aimed to analyze the effect of glutamate metabolism on lipid synthesis in the oleaginous filamentous fungus Mortierella alpina. The gene transcription level and enzyme activity of glutamate metabolism-related enzymes and total lipid production in M. alpina under the condition of glutamate supplementation were measured. The results showed that glutamate supplementation significantly regulated the transcription level of glutamate metabolism-related genes in M. alpina. The increased activities of NADP+ glutamate dehydrogenase and glutamate decarboxylase provided sufficient NADPH for the de novo synthesis of fatty acids, which increased the total cell lipid content by 3 g/L (about 10% of the dry weight). This study provides a reference for the analysis of amino acid-mediated microbial lipid synthesis mechanism.
Key words:  Mortierella alpina    glutamate metabolism    lipid    transcription    glutamate dehydrogenase    glutamate decarboxylase
收稿日期:  2021-12-20      修回日期:  2022-01-28           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
作者简介:  博士研究生(陈海琴教授为通信信者,E-mail:haiqinchen@jiangnan.edu.cn)
引用本文:    
蔡毅博,陈海琴,张灏,等. 高山被孢霉谷氨酸代谢调控产脂的初步研究[J]. 食品与发酵工业, 2022, 48(20): 188-195.
蔡毅博,陈海琴,张灏,et al. Preliminary study on lipid production of Mortierella alpina regulated by glutamate metabolism[J]. Food and Fermentation Industries, 2022, 48(20): 188-195.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030523  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/188
[1] CHANG L L, LU H Q, CHEN H Q, et al.Lipid metabolism research in oleaginous fungus Mortierella alpina:Current progress and future prospects[J].Biotechnology Advances, 2022,54:107794.
[2] WANG L, CHEN W W, FENG Y, et al.Genome characterization of the oleaginous fungus Mortierella alpina[J].PLoS One, 2011, 6(12):e28319.
[3] ZHANG A H, JI X J, WU W J, et al.Lipid fraction and intracellular metabolite analysis reveal the mechanism of arachidonic acid-rich oil accumulation in the aging process of Mortierella alpina[J].Journal of Agricultural and Food Chemistry, 2015, 63(44):9 812-9 819.
[4] LU H Q, CHEN H Q, TANG X, et al.Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation for TAG accumulation in oleaginous fungus Mortierella alpina[J].Biotechnology for Biofuels, 2020, 13(1):1-17.
[5] LING F Z, TANG X, ZHANG H, et al.Role of the mitochondrial citrate-oxoglutarate carrier in lipid accumulation in the oleaginous fungus Mortierella alpina[J].Biotechnology Letters, 2021, 43(7):1 455-1 466.
[6] WANG H C, ZHANG C, CHEN H Q, et al.Tetrahydrobiopterin plays a functionally significant role in lipogenesis in the oleaginous fungus Mortierella alpina[J].Frontiers in Microbiology, 2020, 11:250.
[7] WANG H C, WANG C M, YUAN W W, et al.The role of phenylalanine hydroxylase in lipogenesis in the oleaginous fungus Mortierella alpina[J].Microbiology, 2021, 167(8).DOI:10.1099/mic.0.001062.
[8] HUANG M W, CHEN H Q, TANG X, et al.Two-stage pH control combined with oxygen-enriched air strategies for the highly efficient production of EPA by Mortierella alpina CCFM698 with fed-batch fermentation[J].Bioprocess and Biosystems Engineering, 2020, 43(9):1 725-1 733.
[9] SHAO D, VILLET O, ZHANG Z, et al.Glucose promotes cell growth by suppressing branched-chain amino acid degradation[J].Nature Communications, 2018, 9:2935.
[10] HÄUSLER R E, LUDEWIG F, KRUEGER S.Amino acids-a life between metabolism and signaling[J].Plant Science, 2014, 229:225-237.
[11] ARAU'JO W L, TOHGE T, ISHIZAKI K, et al.Protein degradation-an alternative respiratory substrate for stressed plants[J].Trends in Plant Science, 2011, 16(9):489-498.
[12] LIANG Y X, KONG F T, TORRES-ROMERO I, et al.Branched-chain amino acid catabolism impacts triacylglycerol homeostasis in Chlamydomonas reinhardtii[J].Plant Physiology, 2019, 179(4):1 502-1 514.
[13] NEWSHOLME P, PROCOPIO J, LIMA M M R, et al.Glutamine and glutamate-their central role in cell metabolism and function[J].Cell Biochemistry and Function, 2003, 21(1):1-9.
[14] MISHRA P, LEE N R, LAKSHMANAN M, et al.Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica[J].BMC Systems Biology, 2018, 12(2):9-20.
[15] SARASA S B, MAHENDRAN R, MUTHUSAMY G, et al.A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA):Its production and role in microbes[J].Current Microbiology, 2020, 77(4):534-544.
[16] KERKHOVEN E J, POMRANING K R, BAKER S E, et al.Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica[J].Npj Systems Biology and Applications, 2016, 2(1):1-7.
[17] LIU H, MARSAFARI M, DENG L, et al.Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica[J].Applied Microbiology and Biotechnology, 2019, 103(7):3 167-3 179.
[18] LIU L Q, PAN A, SPOFFORD C, et al.An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica[J].Metabolic Engineering, 2015, 29:36-45.
[19] 王春梅, 王鸿超, 陈海琴, 等.SSADH基因调控对高山被孢霉脂质合成的影响[J].中国油脂, 2018, 43(10):115-120.WANG C M,WANG H C,CHEN H Q, et al.Effects of SSADH gene regulation on lipid synthesis of the oleaginous fungus Mortierella alpina[J].China Oils and Fats, 2018, 43(10):115-120.
[20] 王鸿超. 产油真菌高山被孢霉的脂质合成机理研究[D].无锡:江南大学, 2013.WANG H C.Study on the mechanism of lipid synthesis and accumulation in oleaginous fungus Mortierella alpina[D].Wuxi:Jiangnan university, 2013.
[21] 朱广跃, 杨卫, 吴健, 等.HPLC法定量分析微生物法制备液中产物γ-氨基丁酸和底物L-谷氨酸[J].食品科学, 2015, 36(24):190-194.ZHU G Y, YANG W, WU J, et al.Quantitative analysis of γ-aminobutyric acid and L-glutamic acid in microbial fermentation broth by HPLC[J].Food Science, 2015, 36(24):190-194.
[22] ZHAO Y T, SONG X T, ZHONG D B, et al.γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress[J].Bioresource Technology, 2020, 297:122500.
[1] 马电通, 常雪苗, 李文清, 黄二宾, 杜嵘宇, 杨清, 王芳, 邓佳. 羧甲基纤维素诱导培养下罗伦隐球酵母的转录组差异分析[J]. 食品与发酵工业, 2022, 48(8): 55-63.
[2] 李锦锦, 莫然, 李琼帅, 唐善虎, 李思宁, 张筱蕾. 超声波解冻功率对猪肝品质及脂质氧化特性的影响[J]. 食品与发酵工业, 2022, 48(8): 113-119;127.
[3] 幸晓清, 赵杨, 司风玲. 枇杷叶提取物对冷却肉的保鲜效果[J]. 食品与发酵工业, 2022, 48(7): 219-225.
[4] 田鑫, 戴健欣, 田园, 王光强, 艾连中, 熊智强. 全局转录机器工程调控微生物代谢的应用进展[J]. 食品与发酵工业, 2022, 48(7): 298-303.
[5] 王婷, 刘婵婵, 毛跟年, 钱卫东. 果糖对多形汉逊酵母硒代谢及转录组的影响[J]. 食品与发酵工业, 2022, 48(5): 29-34.
[6] 刘鑫岳, 陈晓平, 焦丽蓉, 陈璐, 冯凡, 陈立, 肖圣威, 田厚宽. 脂质包衣的姜黄素/玉米醇溶蛋白纳米粒的制备及性能表征[J]. 食品与发酵工业, 2022, 48(5): 130-135.
[7] 宋韡, 汤丽群, 高帆. 巴夫杜氏藻不同生长时期的转录组分析[J]. 食品与发酵工业, 2022, 48(4): 82-89.
[8] 黄雪松, 丁跃, 宋昭, 陈晓斌, 陈雄, 王志. ccpN敲除对地衣芽胞杆菌DW2杆菌肽合成代谢的调控效应[J]. 食品与发酵工业, 2022, 48(19): 23-29.
[9] 张越, 王开方, 潘龙, 陈旭升. 小白链霉菌响应低pH胁迫的全局基因转录分析[J]. 食品与发酵工业, 2022, 48(18): 1-10.
[10] 季宏与, 丁常宏, 于丹, 都晓伟. 转录组学技术在人参皂苷生物合成途径研究中的应用进展[J]. 食品与发酵工业, 2022, 48(16): 325-318.
[11] 张言慧, 渊辛华, 高先岭, 袁建国, 吉武科, 王丹华, 邵宝凯. 短乳杆菌GLB-127发酵制备γ-氨基丁酸[J]. 食品与发酵工业, 2022, 48(15): 118-123.
[12] 董鸿春, 付聪, 杨贤庆, 柯悦, 王晓真, 任丹丹, 汪秋宽. 类胡萝卜素脂质体的特性、制备与评价的研究进展[J]. 食品与发酵工业, 2022, 48(14): 303-310.
[13] 杨东霖, 李佳谦, 鲁亮, 王舸楠, 王纪, 赵廷彬, 殷海松, 乔长晟. 磷酸甜菜碱对产黑色素短梗霉发酵产聚苹果酸的影响[J]. 食品与发酵工业, 2022, 48(13): 33-41.
[14] 郝静, 涂心怡, 曹诗诺, 汪涛, 王丰俊. 壳聚糖-核桃多肽脂质体的制备及表征[J]. 食品与发酵工业, 2022, 48(13): 135-140.
[15] 王新伟, 成高民, 李蕊, 赵仁勇. 脂肪酶在面包和馒头中应用研究进展[J]. 食品与发酵工业, 2022, 48(11): 332-337.
[1] LI Bin et al.

Vacuum drying kinetics characteristics of Chinese prickly ash based on Weibull distribution [J]. Food and Fermentation Industries, 2017, 43(11): 58 -64 .

[2] ZHAO Xiang-ying et al. Effect of Glucose on xylitol fermentation byCandida tropicalis SFX - Y9[J]. Food and Fermentation Industries, 2017, 43(11): 107 .
[3] ZHANG Yang et al. Effects of Material Composition on the Oil Absorption of Restructured Potato Chips[J]. Food and Fermentation Industries, 2017, 43(11): 140 .
[4] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[5] . Construction of Fast Purification Method of Recombinant Alkaline Protease with FPLC[J]. Food and Fermentation Industries, 2002, 28(4): 11 .
[6] . [J]. Food and Fermentation Industries, 2001, 27(8): 33 .
[7] . [J]. Food and Fermentation Industries, 2005, 31(11): 43 .
[8] . [J]. Food and Fermentation Industries, 2001, 27(9): 83 .
[9] Huang Cheng,Yin Hong,Shen Wucheng,Xia Xiannian. The Influence of Hydrophilic Material on Low-sugar Carrot Preserved Fruit Moisture Activation[J]. Food and Fermentation Industries, 2006, 32(3): 44 .
[10] Chen Lin,Wu Qing,Wei Wei,Tang Limin. Study on the Antioxidant Activity of the Extract of the Leaves of Lagerstroemia specious L.[J]. Food and Fermentation Industries, 2006, 32(3): 47 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn