Abstract: This study aimed to analyze the effect of glutamate metabolism on lipid synthesis in the oleaginous filamentous fungus Mortierella alpina. The gene transcription level and enzyme activity of glutamate metabolism-related enzymes and total lipid production in M. alpina under the condition of glutamate supplementation were measured. The results showed that glutamate supplementation significantly regulated the transcription level of glutamate metabolism-related genes in M. alpina. The increased activities of NADP+ glutamate dehydrogenase and glutamate decarboxylase provided sufficient NADPH for the de novo synthesis of fatty acids, which increased the total cell lipid content by 3 g/L (about 10% of the dry weight). This study provides a reference for the analysis of amino acid-mediated microbial lipid synthesis mechanism.
蔡毅博,陈海琴,张灏,等. 高山被孢霉谷氨酸代谢调控产脂的初步研究[J]. 食品与发酵工业, 2022, 48(20): 188-195.
蔡毅博,陈海琴,张灏,et al. Preliminary study on lipid production of Mortierella alpina regulated by glutamate metabolism[J]. Food and Fermentation Industries, 2022, 48(20): 188-195.
CHANG L L, LU H Q, CHEN H Q, et al.Lipid metabolism research in oleaginous fungus Mortierella alpina:Current progress and future prospects[J].Biotechnology Advances, 2022,54:107794.
[2]
WANG L, CHEN W W, FENG Y, et al.Genome characterization of the oleaginous fungus Mortierella alpina[J].PLoS One, 2011, 6(12):e28319.
[3]
ZHANG A H, JI X J, WU W J, et al.Lipid fraction and intracellular metabolite analysis reveal the mechanism of arachidonic acid-rich oil accumulation in the aging process of Mortierella alpina[J].Journal of Agricultural and Food Chemistry, 2015, 63(44):9 812-9 819.
[4]
LU H Q, CHEN H Q, TANG X, et al.Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation for TAG accumulation in oleaginous fungus Mortierella alpina[J].Biotechnology for Biofuels, 2020, 13(1):1-17.
[5]
LING F Z, TANG X, ZHANG H, et al.Role of the mitochondrial citrate-oxoglutarate carrier in lipid accumulation in the oleaginous fungus Mortierella alpina[J].Biotechnology Letters, 2021, 43(7):1 455-1 466.
[6]
WANG H C, ZHANG C, CHEN H Q, et al.Tetrahydrobiopterin plays a functionally significant role in lipogenesis in the oleaginous fungus Mortierella alpina[J].Frontiers in Microbiology, 2020, 11:250.
[7]
WANG H C, WANG C M, YUAN W W, et al.The role of phenylalanine hydroxylase in lipogenesis in the oleaginous fungus Mortierella alpina[J].Microbiology, 2021, 167(8).DOI:10.1099/mic.0.001062.
[8]
HUANG M W, CHEN H Q, TANG X, et al.Two-stage pH control combined with oxygen-enriched air strategies for the highly efficient production of EPA by Mortierella alpina CCFM698 with fed-batch fermentation[J].Bioprocess and Biosystems Engineering, 2020, 43(9):1 725-1 733.
[9]
SHAO D, VILLET O, ZHANG Z, et al.Glucose promotes cell growth by suppressing branched-chain amino acid degradation[J].Nature Communications, 2018, 9:2935.
[10]
HÄUSLER R E, LUDEWIG F, KRUEGER S.Amino acids-a life between metabolism and signaling[J].Plant Science, 2014, 229:225-237.
[11]
ARAU'JO W L, TOHGE T, ISHIZAKI K, et al.Protein degradation-an alternative respiratory substrate for stressed plants[J].Trends in Plant Science, 2011, 16(9):489-498.
[12]
LIANG Y X, KONG F T, TORRES-ROMERO I, et al.Branched-chain amino acid catabolism impacts triacylglycerol homeostasis in Chlamydomonas reinhardtii[J].Plant Physiology, 2019, 179(4):1 502-1 514.
[13]
NEWSHOLME P, PROCOPIO J, LIMA M M R, et al.Glutamine and glutamate-their central role in cell metabolism and function[J].Cell Biochemistry and Function, 2003, 21(1):1-9.
[14]
MISHRA P, LEE N R, LAKSHMANAN M, et al.Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica[J].BMC Systems Biology, 2018, 12(2):9-20.
[15]
SARASA S B, MAHENDRAN R, MUTHUSAMY G, et al.A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA):Its production and role in microbes[J].Current Microbiology, 2020, 77(4):534-544.
[16]
KERKHOVEN E J, POMRANING K R, BAKER S E, et al.Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica[J].Npj Systems Biology and Applications, 2016, 2(1):1-7.
[17]
LIU H, MARSAFARI M, DENG L, et al.Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica[J].Applied Microbiology and Biotechnology, 2019, 103(7):3 167-3 179.
[18]
LIU L Q, PAN A, SPOFFORD C, et al.An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica[J].Metabolic Engineering, 2015, 29:36-45.
[19]
王春梅, 王鸿超, 陈海琴, 等.SSADH基因调控对高山被孢霉脂质合成的影响[J].中国油脂, 2018, 43(10):115-120.WANG C M,WANG H C,CHEN H Q, et al.Effects of SSADH gene regulation on lipid synthesis of the oleaginous fungus Mortierella alpina[J].China Oils and Fats, 2018, 43(10):115-120.
[20]
王鸿超. 产油真菌高山被孢霉的脂质合成机理研究[D].无锡:江南大学, 2013.WANG H C.Study on the mechanism of lipid synthesis and accumulation in oleaginous fungus Mortierella alpina[D].Wuxi:Jiangnan university, 2013.
[21]
朱广跃, 杨卫, 吴健, 等.HPLC法定量分析微生物法制备液中产物γ-氨基丁酸和底物L-谷氨酸[J].食品科学, 2015, 36(24):190-194.ZHU G Y, YANG W, WU J, et al.Quantitative analysis of γ-aminobutyric acid and L-glutamic acid in microbial fermentation broth by HPLC[J].Food Science, 2015, 36(24):190-194.
[22]
ZHAO Y T, SONG X T, ZHONG D B, et al.γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress[J].Bioresource Technology, 2020, 297:122500.