Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 78-84    DOI: 10.13995/j.cnki.11-1802/ts.030775
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
姜黄素共晶光动力对副溶血性弧菌生物被膜的作用
古伟明, 马皓然, 孙建霞, 刘丹*
(广东工业大学 轻工化工学院, 广东 广州,510006)
Effect of curcumin co-crystal-mediated photodynamic inactivation on Vibrio parahaemolyticus biofilm
GU Weiming, MA Haoran, SUN Jianxia, LIU Dan*
(School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China)
下载:  HTML  PDF (2610KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 姜黄素(curcumin, CUR)是一种天然二酮类化合物,因其低毒性和低成本而被广泛用作光动力灭活(photodynamic inactivation, PDI)的光敏剂(photosensitizer,PS)。然而CUR在PDI中的主要限制是它在水介质中的溶解度低、生物利用率低。共晶是一种新型工艺,通过活性药物成分和共晶形成物之间的分子相互作用,可以改善化合物的物理化学特性。该研究通过研磨、自然挥发、旋蒸3种方法制备姜黄素共晶,其中自然挥发制备的姜黄素共晶(CUR-D-Tyr co-crystals, CDC)在体积分数为0.5%的乙醇中的溶解度最高,为姜黄素的8.58倍,CDC呈现出不同于CUR的晶体结构。CDC最小抑菌浓度(minimum inhibitory concentration, MIC)为0.005 0 g/L,而CUR的MIC为0.010 g/L。0.005 0 g/L的CDC介导的PDI对生物被膜的抑制率为91.80%,而相同浓度的CUR的抑制率仅为57.07%。CDC溶解度提高后,CDC表现出对胞外聚合物(extracellular polymeric substances, EPS)中多糖和蛋白更强的抑制效果,导致副溶血性弧菌生物菌膜对CDC介导的光动力抗性降低,达到更强的光动力抑制效果。该研究也为光动力技术在食品的安全控制中的进一步应用提供了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
古伟明
马皓然
孙建霞
刘丹
关键词:  姜黄素共晶  光动力  溶解度  副溶血性弧菌  生物被膜    
Abstract: Curcumin (CUR) is a natural diketone compound which is widely used as photosensitizer for photodynamic inactivation (PDI) due to its low toxicity and low cost. However, the main limitation of CUR in PDI application is its low solubility and low bioavailability. Co-crystallization is a novel process enables improvement in physicochemical properties of active ingredients by incidence of molecular interactions between active pharmaceutical ingredient and conformer. In this study, curcumin co-crystals were prepared by grinding, natural volatilization and spin evaporation. Among them, the curcumin D-Tyr co-crystals (CDC) prepared by natural volatilization had the highest solubility in ethanol (0.5% volume ratio), which was 8.35 times that of CUR. Compared with CUR, CDC also showed a different crystal structure. The minimum inhibitory concentration (MIC) of CDC was 0.005 0 g/L, while the MIC of CUR was 0.010 g/L. The inhibition rate of CDC-mediated PDI at 0.005 0 g/L on biofilm was 91.80%, while that of CUR at the same concentration was only 57.07%. With the increased solubility of CDC, CDC showed stronger inhibition effects on polysaccharides and proteins in extracellular polymers (EPS), which lead to reduced resistance of Vibrio parahaemolyticus biofilm to CDC-mediated PDI. This study provides a fundamental for further application of photodynamic technology in food safety control.
Key words:  curcumin co-crystal    photodynamic inactivation    solubility    Vibrio parahaemolyticus    biofilm
收稿日期:  2022-01-11      修回日期:  2022-02-09           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 国家自然科学基金资助项目(21706037);广东工业大学青年百人引进人才资助项目(220413127)
作者简介:  硕士研究生(刘丹副教授为通信作者,E-mail:dana0816@163.com)
引用本文:    
古伟明,马皓然,孙建霞,等. 姜黄素共晶光动力对副溶血性弧菌生物被膜的作用[J]. 食品与发酵工业, 2022, 48(20): 78-84.
古伟明,马皓然,孙建霞,et al. Effect of curcumin co-crystal-mediated photodynamic inactivation on Vibrio parahaemolyticus biofilm[J]. Food and Fermentation Industries, 2022, 48(20): 78-84.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030775  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/78
[1] 苏泽红, 练高建, 佘美华, 等.脉冲高电压对副溶血性弧菌病原性的影响[J].现代食品科技, 2012, 28(7):743-745;795.SU Z H, LIAN G J, SHE M H, et al.Effect of pulse electric fields on the pathogenic of Vibrio parahaemolyticus[J].Modern Food Science and Technology, 2012, 28(7):743-745;795.
[2] 许愈, 张昭寰, 赵莉, 等.应用酸性电解水联合超声波杀灭副溶血性弧菌[J].上海海洋大学学报, 2020, 29(4):578-584.XU Y, ZHANG Z H, ZHAO L, et al.Combination of acidic electrolyzed water with ultrasonic for killing Vibrio parahaemolyticus[J].Journal of Shanghai Ocean University, 2020, 29(4):578-584.
[3] LIU D, GU W M, WANG L, et al.Photodynamic inactivation and its application in food preservation[J].Critical Reviews in Food Science and Nutrition, 2021:1-15.
[4] CORRÊA T Q, BLANCO K C, GARCIA É B, et al.Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety:A study in meat and fruit[J].Photodiagnosis and Photodynamic Therapy, 2020, 30:101678.
[5] HUANG J M, CHEN B W, LI H H, et al.Enhanced antibacterial and antibiofilm functions of the curcumin-mediated photodynamic inactivation against Listeria monocytogenes[J].Food Control, 2020, 108:106886.
[6] HEGER M, VAN GOLEN R F, BROEKGAARDEN M, et al.The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer[J].Pharmacological Reviews, 2013, 66(1):222-307.
[7] DALPIAZ A, PAVAN B, FERRETTI V.Can pharmaceutical co-crystals provide an opportunity to modify the biological properties of drugs?[J].Drug Discovery Today, 2017, 22(8):1 134-1 138.
[8] SATHISARAN I, DALVI S V.Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers[J].Crystal Growth & Design, 2017, 17(7):3 974-3 988.
[9] 胡盛福, 宋胜杰, 丁泽杰, 等.药物共晶制备方法研究进展[J].浙江化工, 2018, 49(7):1-3;15.HU S F, SONG S J, DING Z J, et al.A review of the preparation method of pharmaceutical co-crystal[J].Zhejiang Chemical Industry, 2018,49(7):1-3;15.
[10] CAI Y, GUAN J W, WANG W, et al.pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity[J].Journal of Food Science, 2021, 86(8):3 550-3 562.
[11] 田会婷, 朱晔, 郭呈斌, 等.姜黄素-明胶纳米复合物改善药物水溶性和稳定性的研究[J].河南大学学报:医学版, 2019, 38(1):10-15.TIAN H T, ZHU Y, GUO C B, et al.Study on improvement on the solubility and stability of curcumin by nano complexation with gelatin[J].Journal of Henan University (Medical Science), 2019, 38(1):10-15.
[12] 刘红星, 陈福北, 黄初升, 等.紫外分光光度法在姜黄素类化合物提取中的应用[J].广西师范学院学报(自然科学版), 2008, 25(3):68-72.LIU H X, CHEN F B, HUANG C S, et al.UV-visible absorption and its application to extraction curcuminoids[J].Journal of Guangxi Teachers Education University (Natural Science Edition), 2008, 25(3):68-72.
[13] DING L J, WANG H, LIU D, et al.Bacteria capture and inactivation with functionalized multi-walled carbon nanotubes (MWCNTs)[J].Journal of Nanoscience and Nanotechnology, 2020, 20(4):2 055-2 062.
[14] 罗俊. 二氢杨梅素对金黄色葡萄球菌生物被膜的抑制与清除作用研究[D].广州:广东工业大学, 2021.LUO J.Study on the inhibition and removal of dihydromyricetin on Staphylococcus aureus biofilm[D].Guangzhou:Guangdong University of Technology, 2021.
[15] 曹凤娇. 芦荟大黄素抑制金黄色葡萄球菌生物被膜形成的分子机制研究[D].长春:吉林农业大学, 2017.CAO F J.The study on the molecular mechanism of inhibitory effect of Aloc-emodin on Staphylococcus aureus biofilm[D].Changchun:Jilin Agricultural University, 2017.
[16] 陈德, 刘意, 范凯燕, 等.姜黄素微球中药物存在形式与释药行为的关系研究[J].药学学报, 2016, 51(1):140-146.CHEN D, LIU Y, FAN K Y, et al.Relation between drug release and the drug status within curcumin-loaded microsphere[J].Acta Pharmaceutica Sinica, 2016, 51(1):140-146.
[17] 朱艳蕾. 细菌生长曲线测定实验方法的研究[J].微生物学杂志, 2016, 36(5):108-112.ZHU Y L.Experimental method of bacteria growth curve determination[J].Journal of Microbiology, 2016, 36(5):108-112.
[18] 闫昱文, 许涛, 徐大可, 等.D-氨基酸对细菌生物膜分散作用的研究进展[J].中国实用口腔科杂志, 2021, 14(1):115-117.YAN Y W, XU T, XU D K, et al.Research progress in the dispersion effect of D-amino acids on bacterial biofilms[J].Chinese Journal of Practical Stomatology, 2021, 14(1):115-117.
[19] DENG X, TANG S Z, WU Q, et al.Inactivation of Vibrio parahaemolyticus by antimicrobial photodynamic technology using methylene blue[J].Journal of the Science of Food and Agriculture, 2016, 96(5):1 601-1 608.
[20] 雷欢, 谢婷, 魏宇清, 等.4种防腐剂对副溶血弧菌生物膜形成的抑制作用[J].食品科学, 2017, 38(7):6-10.LEI H, XIE T, WEI Y Q, et al.Inhibitory effects of four kinds of food preservatives on biofilm formation by Vibrio parahaemolyticus[J].Food Science, 2017, 38(7):6-10.
[21] LU C R, LIU H, SHANGGUAN W D, et al.Antibiofilm activities of the cinnamon extract against Vibrio parahaemolyticus and Escherichia coli[J].Archives of Microbiology, 2021, 203(1):125-135.
[22] 马广立, 程翼宇.口服药物生物利用度预测研究进展[J].药学学报, 2006, 41(10):917-920.MA G L, CHENG Y Y.Recent advance in predicting oral bioavailability[J].Acta Pharmaceutica Sinica, 2006, 41(10):917-920.
[23] 王鹤龄, 齐华, 李保胜, 等.非标准D-氨基酸对细菌生物膜抑制作用的研究进展[J].吉林大学学报:医学版,2019, 45(2):445-449.WANG H L, QI H, LI B S, et al.Research progress in inhibitory effects of non-canonical D-amino acids on bacterial biofilm[J].Journal of Jilin University (Medicine Edition), 2019, 45(2):445-449.
[24] 吴谦. 副溶血弧菌生物菌膜形成特性及亚甲基蓝光动力灭活作用研究[D].广州:暨南大学, 2016.WU Q.Vibrio parahaemolyticus biofilm formation and inactivation with methylene blue photodynamic technology[D].Guangzhou:Jinan University, 2016.
[25] 董冬丽, 林少玲, 孙崇臻, 等.姜黄素光动力技术对水产食品霍利斯格里蒙特菌和溶藻弧菌的灭活作用[J].中国食品学报, 2022, 22(2):40-48.DONG D L, LIN S L, SUN C Z, et al.Inactivation of curcumin photodynamic technology on Grimontia hollisae and Vibrio alginolyticus in aquatic food[J].Journal of Chinese Institute of Food Science and Technology, 2022, 22(2):40-48.
[1] 韩翔鹏, 何美珊, 吴金松, 李尧, 刘丹, 钟青萍. 薰衣草精油对不同温度下形成的副溶血弧菌成熟生物被膜的清除作用[J]. 食品与发酵工业, 2022, 48(14): 68-74.
[2] 张帅, 刘若雨, 李晨, 姚丽丽, 熊晓辉, 崔晓文. 姜黄素介导的光动力冷杀菌技术在食品中的研究进展[J]. 食品与发酵工业, 2022, 48(12): 301-306.
[3] 吴佳, 赵鸾, 魏娜, 赵磊, 王立宇, 夏杨毅. 动态高压微射流处理对低盐肌原纤维蛋白溶解度和结构的影响[J]. 食品与发酵工业, 2022, 48(11): 129-135.
[4] 邓吉斯, 王百鸿, 石慧. 不同浓度桑叶多酚对鲜切生菜褐变和假单胞菌的抑制作用[J]. 食品与发酵工业, 2022, 48(10): 206-211.
[5] 刘婷, 尹启蒙, 周滟晴, 赵帅东, 季旭, 张晓妍, 王浩鹏, 汪立平, 樊现远. 一株副溶血性弧菌拮抗菌的筛选、鉴定及其抑菌物质特性研究[J]. 食品与发酵工业, 2022, 48(1): 76-83.
[6] 张健, 朱秋华, 张明, 王丽卫, 董浩, 曾仙童, 白梧桐, 郭晓华, 申照华, 宋钢, 张德福, 励建荣. 副溶血性弧菌毒力因子及耐药机制研究进展[J]. 食品与发酵工业, 2022, 48(1): 301-307.
[7] 赵颖颖, 李三影, 田金凤, 扶磊, 贾丰鲜, 李可, 吴丽丽, 白艳红. 超声波对不同盐浓度下肌原纤维蛋白溶解性的影响[J]. 食品与发酵工业, 2021, 47(7): 197-202.
[8] 上官文丹, 陈松, 韩翔鹏, 刘丹, 李尧, 钟青萍. 鼠李糖乳杆菌MS1对副溶血弧菌群体感应淬灭作用的研究[J]. 食品与发酵工业, 2021, 47(24): 64-70.
[9] 熊晓辉, 孔佳仪, 张帅, 李晨, 崔晓文. 光敏剂介导光动力杀菌在食品中应用的研究进展[J]. 食品与发酵工业, 2021, 47(22): 309-318.
[10] 魏春豪, 迟海, 杨光昕, 陶乐仁. 副溶血性弧菌多克隆抗体制备及应用[J]. 食品与发酵工业, 2020, 46(8): 157-161.
[11] 查飞, 王洲, 薛正莲, 蒋雪彪, 纪国辉. 副溶血性弧菌生物膜形成及表面活性剂的影响[J]. 食品与发酵工业, 2019, 45(9): 49-54.
[12] 蓝蔚青, 巩涛硕, 陈梦玲, 王蒙, 谢晶. 水产品中微生物生物被膜形成机制与控制方法研究进展[J]. 食品与发酵工业, 2019, 45(2): 228-232.
[13] 帖余, 刘军, 李丽, 王景峰, 王国强, 赵琦锴, 周鹏松. 两步法制备菜粕肽及提高蛋白溶解度工艺[J]. 食品与发酵工业, 2019, 45(16): 143-147.
[14] . D- 最优混料设计优化方便粥粉配方[J]. 食品与发酵工业, 2018, 44(4): 165-172.
[15] 薛高瞻, 张凯, 郑尧, 等.. pH调节法提取三种贝类分离蛋白及其组成、特性分析[J]. 食品与发酵工业, 2018, 44(10): 145-151.
[1] PENG Zhi-fu et all . Comparison of odor-active compounds in distillates of five grains between first time and second time distillation using AEDA[J]. Food and Fermentation Industries, 2017, 43(11): 1 -8 .
[2] YUAN Feng-jiao et al . Heterologous Expression of phenylpyruvate reductase from Lactobacillus plantarum and Its Application in the Preparation of Phenyllactic Acid[J]. Food and Fermentation Industries, 2017, 43(11): 16 -21 .
[3] BAN Jia et al . Use of molasses for DHA production by Schizochytrium sp.[J]. Food and Fermentation Industries, 2017, 43(11): 39 -43 .
[4] ZHANG Dong et al. Researchprogressonreducing sodium chlorideinmeatproducts[J]. Food and Fermentation Industries, 2017, 43(11): 238 .
[5] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[6] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[7] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
[8] . [J]. Food and Fermentation Industries, 2002, 28(4): 37 .
[9] . [J]. Food and Fermentation Industries, 2002, 28(6): 78 .
[10] . [J]. Food and Fermentation Industries, 2004, 30(9): 139 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn