Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 338-344    DOI: 10.13995/j.cnki.11-1802/ts.032491
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
牛乳来源神经保护肽的研究进展
吴秀英1, 赖孟瑄2, 姜云芸2, 刘红霞1, 马海然2*
1(内蒙古蒙牛乳业(集团)股份有限公司,内蒙古 呼和浩特,011500)
2(蒙牛高科乳制品(北京)有限责任公司,北京, 100107)
Research progress of bovine milk-derived neuroprotective peptides
WU Xiuying1, LAI Mengxuan2, JIANG Yunyun2, LIU Hongxia1, MA Hairan2*
1(Inner Mongolia Mengniu Dairy (Group) Co.Ltd., Huhhot 011500, China)
2(Mengniu Hi-Tech Dairy (Beijing) Co.Ltd., Beijing, 100107, China)
下载:  HTML  PDF (1820KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人口老龄化问题越来越严重,神经退行性疾病患病人数逐年上升,为大众健康带来困扰的同时滋生了更多的社会问题。牛乳来源的神经保护肽可通过抑制神经炎症和氧化损伤导致的淀粉样斑块沉积等方式缓解阿尔兹海默症、帕金森病等神经退行性疾病,且不存在服用药物产生的严重副作用。乳源神经保护肽的相关研究主要集中在功效验证方面,其在人体中发挥功效的途径还缺少系统、完整、深入的研究。该文以牛乳来源的生物活性肽为研究对象,围绕乳源活性肽结构特征、神经保护功效及调控机理相关研究进行了综述,探讨了牛乳来源的生物活性肽在神经保护方面的独特价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴秀英
赖孟瑄
姜云芸
刘红霞
马海然
关键词:  牛乳  神经保护肽  认知健康  构效关系  调控机理    
Abstract: With the severe problem of population aging, the number of patients with neurodegenerative diseases is increasing annually, which brings troubles to public health and leads to more social problems. Bovine milk-derived neuroprotective peptides attenuate symptoms of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease by inhibiting neuro-inflammation and β-amyloid plaque deposition caused by oxidative damage and cause no side effects. Recent researches related to milk-derived neuroprotective peptides are mainly efficacy evaluation, but there is still few relevant and comprehensive research focus on their mechanism in vivo. This review focuses on bovine milk-derived bioactive peptides and summarizes researches about their structure-activity relationships, neuroprotective efficacy and mechanism, which confirms the unique value of those bioactive peptides in neuroprotection.
Key words:  bovine milk    neuroprotective peptides    cognitive health    structure-activity relationship    efficacy and mechanism
收稿日期:  2022-05-30      修回日期:  2022-06-27           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 2021年度内蒙古自治区科技重大专项(2021ZD0014)
作者简介:  硕士,高级工程师(马海然高级工程师为通信作者,E-mail:mahairan@mengniu.cn)
引用本文:    
吴秀英,赖孟瑄,姜云芸,等. 牛乳来源神经保护肽的研究进展[J]. 食品与发酵工业, 2022, 48(20): 338-344.
吴秀英,赖孟瑄,姜云芸,et al. Research progress of bovine milk-derived neuroprotective peptides[J]. Food and Fermentation Industries, 2022, 48(20): 338-344.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.032491  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/338
[1] 薛小燕, 郭小华, 李敏, 等. 神经退行性疾病发病机制研究进展[J]. 中国老年学杂志, 2015, 35(11):3 149-3 152.XUE X Y, GUO X H, LI M, et al. Research progress on the pathogenesis of neurodegenerative diseases[J]. Chinese Journal of Gerontology, 2015, 35(11):3 149-3 152.
[2] WANG S G, SUN-WATERHOUSE D, NEIL WATERHOUSE G I, et al.Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases:A review[J].Trends in Food Science & Technology, 2021, 116:712-732.
[3] DHAKAL A, BOBRIN B D. Cognitive Deficits[M]. Treasure Island: FL , StatPearls, 2022.
[4] 蒋慧娇, 陈小芳.不同饮食模式对帕金森病影响的研究进展[J].护理研究, 2022, 36(3):454-457.JIANG H J, CHEN X F.Research progress on the effect of different dietary patterns on Parkinson's disease[J].Chinese Nursing Research, 2022, 36(3):454-457.
[5] 柯超, 曹洋, 夏叶婉, 等.浅析不同针法治疗阿尔兹海默病的研究进展[J].湖南中医药大学学报, 2022, 42(2):337-342.KE C, CAO Y, XIA Y W, et al.Analysis on the research progress of different acupuncture treatments for Alzheimer's disease[J].Journal of Hunan University of Chinese Medicine, 2022, 42(2):337-342.
[6] 曹原, 曹展, 高耀辉, 等.肠道菌群与神经免疫系统及神经退行性疾病的相关研究进展[J].医学综述, 2022, 28(2):209-215.CAO Y, CAO Z, GAO Y H, et al.Research progress of gut microbiota, neuroimmune system and neurodegenerative disease[J].Medical Recapitulate, 2022, 28(2):209-215.
[7] 刘旺, 赵虹, 夏兆云, 等. 帕金森病相关病理演变研究进展[J]. 神经损伤与功能重建, 2022, 17(3):148-151.LIU W, ZHAO H, XIA Z Y, et al. Research progress on pathological evolution associated with Parkinson's disease[J]. Neural Injury and Functional Reconstruction, 2022, 17(3):148-151.
[8] ZHAO T T, ZHENG L, ZHANG Q, et al.Stability towards the gastrointestinal simulated digestion and bioactivity of PAYCS and its digestive product PAY with cognitive improving properties[J].Food & Function, 2019, 10(5):2 439-2 449.
[9] 施蕴渝, 张亮.线粒体与神经退行性疾病[J].生物学杂志, 2022, 39(2):1-10.SHI Y Y, ZHANG L.Mitochondria and neurodegenerative disease[J].Journal of Biology, 2022, 39(2):1-10.
[10] 滕玉鸥, 曹梦麟, 郁彭, 等.阿尔茨海默病药物研发进展[J].天津科技大学学报, 2022, 37(1):1-10.TENG Y O, CAO M L, YU P, et al.Progress in Alzheimer's disease drug development[J].Journal of Tianjin University of Science & Technology, 2022, 37(1):1-10.
[11] DE OLIVEIRA SOUZA A, COUTO-LIMA C A, CATALÃO C H R, et al.Neuroprotective action of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on paraquat intoxication in Drosophila melanogaster[J].NeuroToxicology, 2019, 70:154-160.
[12] LI Y, DAI Y B, SUN J Y, et al.Neuroglobin attenuates beta amyloid-induced apoptosis through inhibiting caspases activity by activating PI3K/Akt signaling pathway[J].Journal of Molecular Neuroscience, 2016, 58(1):28-38.
[13] ZHANG Z J, CHEANG L C V, WANG M W, et al.Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish[J].International Journal of Molecular Medicine, 2011, 27(2):195-203.
[14] TERENIUS L.From opiate pharmacology to opioid peptide physiology[J].Upsala Journal of Medical Sciences, 2000, 105(1):1-15.
[15] WANG X Q, YU H H, XING R E, et al.Effect and mechanism of oyster hydrolytic peptides on spatial learning and memory in mice[J].RSC Advances, 2018, 8(11):6 125-6 135.
[16] SU X N, ZHANG J Q, WANG W C, et al.Dietary patterns and risk of mild cognitive impairment among Chinese elderly:A cross-sectional study[J].PLoS One, 2020, 15(7):e0235974.
[17] HUANG Q M, JIANG H R, ZHANG J G, et al.Dietary patterns are associated with multi-dimensional cognitive functions among adults aged 55 and older in China[J].Frontiers in Nutrition, 2022, 9:806871.
[18] TESSIER A J, PRESSE N, RAHME E, et al.Milk, yogurt, and cheese intake is positively associated with cognitive executive functions in older adults of the Canadian longitudinal study on aging[J].The Journals of Gerontology:Series A, 2021, 76(12):2 223-2 231.
[19] HUANG Q M, JIA X F, ZHANG J G, et al.Diet-cognition associations differ in mild cognitive impairment subtypes[J].Nutrients, 2021, 13(4):1341.
[20] AKAZAWA N, HAMASAKI A, TANAHASHI K, et al.Lactotripeptide ingestion increases cerebral blood flow velocity in middle-aged and older adults[J].Nutrition Research, 2018, 53:61-66.
[21] HAMASAKI A, AKAZAWA N, YOSHIKAWA T, et al.Combined effects of lactotripeptide and aerobic exercise on cognitive function and cerebral oxygenation in middle-aged and older adults[J].The American Journal of Clinical Nutrition, 2019, 109(2):353-360.
[22] FUKUDA T, KANATOME A, TAKASHIMA A, et al.Effect of whey-derived lactopeptide β-lactolin on memory in healthy adults:An integrated analysis of data from randomized controlled trials[J].The Journal of Nutrition, Health & Aging, 2022, 26(2):127-132.
[23] KITA M, KOBAYASHI K, OBARA K, et al.Supplementation with whey peptide rich in β-lactolin improves cognitive performance in healthy older adults:A randomized, double-blind, placebo-controlled study[J].Frontiers in Neuroscience, 2019, 13:399.
[24] HANDATTU S P, GARBER D W, MONROE C E, et al.Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer's disease[J].Neurobiology of Disease, 2009, 34(3):525-534.
[25] MIN L J, KOBAYASHI Y, MOGI M, et al.Administration of bovine casein-derived peptide prevents cognitive decline in Alzheimer disease model mice[J].PLoS One, 2017, 12(2):e0171515.
[26] ANO Y, YOSHINO Y, KUTSUKAKE T, et al.Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline[J].Aging, 2019, 11(10):2 949-2 967.
[27] YATES S L, BURGESS L H, KOCSIS-ANGLE J, et al.Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia[J].Journal of Neurochemistry, 2000, 74(3):1 017-1 025.
[28] OHINATA K, SONODA S, INOUE N, et al.Beta-Lactotensin, a neurotensin agonist peptide derived from bovine beta-lactoglobulin, enhances memory consolidation in mice[J].Peptides, 2007, 28(7):1 470-1 474.
[29] OHSAWA K, UCHIDA N, OHKI K, et al.Identification of peptides present in sour milk whey that ameliorate scopolamine-induced memory impairment in mice[J].International Journal of Food Sciences and Nutrition, 2018, 69(1):33-45.
[30] ANO Y, KUTSUKAKE T, SASAKI T, et al.Identification of a novel peptide from β-casein that enhances spatial and object recognition memory in mice[J].Journal of Agricultural and Food Chemistry, 2019, 67(29):8 160-8 167.
[31] SASAI M, KATO M, OHSAWA K, et al.Effects of a single dose of tablets containing lactononadecapeptide on cognitive function in healthy adults:A randomized, double-blind, cross-over, placebo-controlled trial[J].Bioscience, Biotechnology, and Biochemistry, 2020, 85(4):948-956.
[32] NAGAI A, MIZUSHIGE T, MATSUMURA S, et al.Orally administered milk-derived tripeptide improved cognitive decline in mice fed a high-fat diet[J].FASEB Journal, 2019, 33(12):14 095-14 102.
[33] ICHINOSE T, MURASAWA H, ISHIJIMA T, et al.Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease[J].PLoS One, 2020, 15(5):e0232233.
[34] CHAKRABARTI S, WU J P.Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells[J].PLoS One, 2015, 10(2):e0117492.
[35] NARVA M, RISSANEN J, HALLEEN J, et al.Effects of bioactive peptide, valyl-prolyl-proline (VPP), and Lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats[J].Annals of Nutrition & Metabolism, 2007, 51(1):65-74.
[36] KWAK S J, KIM C S, CHOI M S, et al. The soy peptide Phe-Leu-Val reduces TNF-α-induced inflammatory response and insulin resistance in adipocytes[J]. Journal of Medicinal Food, 2016, 19(7):678-685.
[37] NAN Y H, PARK K H, PARK Y, et al. Investigating the effects of positive charge and hydrophobicity on the cell selectivity, mechanism of action and anti-inflammatory activity of a Trp-rich antimicrobial peptide indolicidin[J]. FEMS Microbiology Letters, 2009, 292(1):134-140.
[38] BAMDAD F, SHIN S H, SUH J W, et al. Anti-inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes[J]. Molecules (Basel, Switzerland), 2017, 22(4):609.
[39] ZHENG L, ZHAO Y J, DONG H Z, et al. Structure-activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues[J]. Journal of Functional Foods, 2016, 21:485-496.
[40] JENKINS T A, NGUYEN J C D, POLGLAZE K E, et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis[J]. Nutrients, 2016, 8(1):56.
[41] STONE T W, DARLINGTON L G. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders[J]. British Journal of Pharmacology, 2013, 169(6):1 211-1 227.
[42] HAWKINS B T, EGLETON R D.Fluorescence imaging of blood-brain barrier disruption[J].Journal of Neuroscience Methods, 2006, 151(2):262-267.
[43] SHIMIZU A, MITANI T, TANAKA S, et al.Soybean-derived glycine-arginine dipeptide administration promotes neurotrophic factor expression in the mouse brain[J].Journal of Agricultural and Food Chemistry, 2018, 66(30):7 935-7 941.
[44] PICARIELLO G, FERRANTI P, FIERRO O, et al.Peptides surviving the simulated gastrointestinal digestion of milk proteins:Biological and toxicological implications[J].Journal of Chromatography B, 2010, 878(3-4):295-308.
[45] SARASA S B, MAHENDRAN R, MUTHUSAMY G, et al.A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA):Its production and role in microbes[J].Current Microbiology, 2020, 77(4):534-544.
[46] CHEN X, GUO C, KONG J.Oxidative stress in neurodegenerative diseases[J].Neural Regeneration Research, 2012, 7(5):376-385.
[47] LAFERLA F M, GREEN K N, ODDO S.Intracellular amyloid-beta in Alzheimer's disease[J].Nature Reviews.Neuroscience, 2007, 8(7):499-509.
[48] JIN M M, ZHANG L, YU H X, et al.Protective effect of whey protein hydrolysates on H2O2-induced PC12 cells oxidative stress via a mitochondria-mediated pathway[J].Food Chemistry, 2013, 141(2):847-852.
[49] KALE J, OSTERLUND E J, ANDREWS D W.BCL-2 family proteins:Changing partners in the dance towards death[J].Cell Death & Differentiation, 2018, 25(1):65-80.
[50] LEE S Y, HUR S J.Neuroprotective effects of different molecular weight peptide fractions obtained from beef by hydrolysis with commercial enzymes in SH-SY5Y cells[J].Food Research International, 2019, 121:176-184.
[51] XIAO C C, GHOSH S. NF-κB, an evolutionarily conserved mediator of immune and inflammatory responses[J]. Advances in Experimental Medicine & Biology, 2005, 560:41-45.
[1] 张玉双, 代安娜, 丁功涛, 罗丽, 王宝民, 刘红娜, 丁波. 牦牛乳与豆乳比例、益生菌和浓缩果汁种类对发酵饮料品质的影响[J]. 食品与发酵工业, 2022, 48(7): 97-102.
[2] 明亮, 那琴, 吴晓云, 吉日木图. 热处理对驼乳、牛乳和山羊乳中氨基酸组成与含量的影响[J]. 食品与发酵工业, 2022, 48(21): 97-103.
[3] 张心予, 张兰俊, 张玉, 陈炼红. 促成熟牦牛乳半硬质(切达)干酪成熟特性及挥发性风味物质变化研究[J]. 食品与发酵工业, 2022, 48(20): 169-175.
[4] 宋雪梅, 宋国顺, 梁琪, 张炎. 发酵剂对牦牛乳硬质干酪成熟过程中生物胺的影响[J]. 食品与发酵工业, 2022, 48(2): 116-121.
[5] 刘瑶, 乔海军, 贾志龙, 张卫兵, 张春艳, 霍尚蕾, 苗景源, 申梦娜. 气相色谱-离子迁移谱结合化学计量学分析成熟时间对牦牛乳干酪挥发性风味物质的影响[J]. 食品与发酵工业, 2022, 48(17): 265-272.
[6] 周子寒, 刘琦琦, 郝海宁, 仝令君, 刘同杰, 公丕民, 张兰威, 易华西. 牛乳外泌体对动物双歧杆菌F1-3-2生长及益生特性的影响[J]. 食品与发酵工业, 2022, 48(15): 78-84.
[7] 李晓彤, 徐兵洁, 张进, 李彩虹, 托尔坤·买买提. 帕米尔牦牛乳蛋白分离及α-乳白蛋白纯化研究[J]. 食品与发酵工业, 2022, 48(14): 188-194.
[8] 孙跃如, 林桐, 赵吉春, 雷小娟, 明建. 谷物源抗氧化肽:制备、构效及应用[J]. 食品与发酵工业, 2022, 48(10): 299-305.
[9] 赵嫚, 刘薇, 成浩, 王美南. β-丙氨酸合成方法的研究进展[J]. 食品与发酵工业, 2022, 48(10): 306-313.
[10] 张光艳, 何宏, 周晓红, 王玲丽, 刘同杰, 易华西, 公丕民, 张兰威. 不同来源牛乳酪蛋白过敏原性评价及酶解消减作用研究[J]. 食品与发酵工业, 2022, 48(1): 124-130.
[11] 钱晓芬, 吴涛, 赵理想, 孙杰, 汪钊, 魏春. 基因拷贝数对重组毕赤酵母的牛乳铁蛋白功能片段表达及细胞存活率的影响[J]. 食品与发酵工业, 2021, 47(4): 1-6.
[12] 贺晓玲, 马西亚, 徐秦峰. 牛羊乳区别检验的PCR高分辨熔解检测方法[J]. 食品与发酵工业, 2021, 47(21): 225-230.
[13] 刘莉颖, 宋天霖, 周艺萍, 李选文, 熊智. 青海传统发酵牦牛乳制品中乳酸菌资源发掘及评价[J]. 食品与发酵工业, 2021, 47(18): 70-76.
[14] 王玲丽, 刘同杰, 张兰威, 公丕民, 易华西. 牦牛乳酪蛋白水解制备DPP-IV抑制肽的蛋白酶发掘及其酶解工艺优化[J]. 食品与发酵工业, 2021, 47(15): 137-141.
[15] 纪欣, 刘文俊, 郭艳荣, 孙天松. 新疆自然发酵酸牛乳连续发酵期间乳酸菌菌群动态变化[J]. 食品与发酵工业, 2021, 47(14): 9-15.
[1] PENG Zhi-fu et all . Comparison of odor-active compounds in distillates of five grains between first time and second time distillation using AEDA[J]. Food and Fermentation Industries, 2017, 43(11): 1 -8 .
[2] JIAO Cong-rui et al. Gene xynC from Aspergillus niger encoding a cold-active and acidophilic xylanase[J]. Food and Fermentation Industries, 2017, 43(11): 44 -50 .
[3] JU Ning et al. Isolation, screening and analysis of aroma components of non-Saccharomyces for wolfberry wine[J]. Food and Fermentation Industries, 2017, 43(11): 125 .
[4] ZOU Yu-feng et al. Review onresearchprogressanddevelopmentofgel-typemeat productsprocessing technology[J]. Food and Fermentation Industries, 2017, 43(11): 232 .
[5] FENG Hui-jun et al. The research advance of genus Therwoactinowycer[J]. Food and Fermentation Industries, 2017, 43(11): 257 .
[6] DU Hai et al..

Isolation oflactic acid bacteriaand theircharacteristic of carbon utilization during the liquor-making process of Chinese roasted sesame-like flavor liquor [J]. Food and Fermentation Industries, 0, (): 1 .

[7] . Determination of Mineral Oil in Food[J]. Food and Fermentation Industries, 2002, 28(4): 41 .
[8] . [J]. Food and Fermentation Industries, 2002, 28(4): 23 .
[9] . Constrution of Thermotolerant Alcohol Producing Yeast by Protoplast Fusion[J]. Food and Fermentation Industries, 2002, 28(5): 1 .
[10] . Study on the Processing Technology and Quality Control of Olive Oil[J]. Food and Fermentation Industries, 2002, 28(7): 42 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn