Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (20): 15-21    DOI: 10.13995/j.cnki.11-1802/ts.032744
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
基于电击策略的三孢布拉霉遗传转化体系的优化及应用
沈思巧1, 杨培龙2, 曲音波3, 余晓斌1, 罗玮1*
1(江南大学 生物工程学院,江苏 无锡,214122)
2(农业农村部饲料生物技术重点实验室, 中国农业科学院饲料研究所,北京,100081)
3(山东大学,微生物技术国家重点实验室,山东 青岛,266237)
Optimization and application of the genetic transformation system based on electroshock strategy for Blakeslea trispora
SHEN Siqiao1, YANG Peilong2, QU Yinbo3, YU Xiaobin1, LUO Wei1*
1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
2(Key Laboratory of Feed Biotechnology, the Ministry of Agriculture of People's Republic of China, Feed Research Institute Chinese Academy of Agricultural Sciences, Beijing 100081, China)
3(State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China)
下载:  HTML  PDF (3371KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 电击转化是一种快速有效的转化方法,可广泛应用于微生物遗传操作。为了建立高效的适用于三孢布拉霉的遗传转化技术,该研究基于电转化策略对其原生质体转化进行了优化。首先对制备原生质体的酶解时间、电压大小与电脉冲时间、缓冲液种类、核酸浓度及再生培养时间等进行了单因素优化。然后通过正交试验分析,结果表明在电压为0.4 kV,电脉冲时间为2 ms条件下进行电击,之后再生培养3 h的转化效率最高,达到35.1 CFU/μg。随后以电转化重组了基因btwc-1c的表达载体为例,其转化效率约为30 CFU/μg。荧光定量PCR分析和表型分析结果表明转化菌中btwc-1c的表达水平和β-胡萝卜素的合成水平相对野生菌分别提升了2.5倍和2.1倍,该结果表明该研究建立的电转化三孢布拉霉原生质的方法能够高效实现受体菌对外源载体的摄取,为研究三孢布拉霉中关键调控基因的功能奠定了良好的基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈思巧
杨培龙
曲音波
余晓斌
罗玮
关键词:  三孢布拉霉  电转化  原生质体  转化效率    
Abstract: Electroshock is a rapid and effective transformation method that can be widely used in microbial genetic manipulation. In order to establish an efficient and applicable genetic transformation technique for Blakeslea trispora, this study optimized its protoplast transformation based on the electroshock strategy. The enzymatic digestion time, voltage and electric pulse time, buffer type, nucleic acid concentration and regeneration incubation time for the preparation of protoplasts were first optimized as single factors. Then orthogonal design tests showed that the highest transformation efficiency of 35.1 CFU/μg was achieved at a voltage of 0.4 kV and an electrical pulse time of 2 ms, followed by regeneration incubation for 3 h. Subsequently, taking the expression vector of recombinant gene btwc-1c as an example, it was electrotransformed with a transformation efficiency of approximately 30 CFU/μg. When compared with the wild-type bacteria, the expression level of btwc-1c and the synthesis level of β-carotene in the transformed bacteria by fluorescence PCR and phenotypic analyses increased by 2.5-fold and 2.1-fold, respectively. This indicated that the electrotransformation method established in this study could achieve efficient uptake of exogenous vector by the recipient bacteria and lay a good foundation for the study of the functions of key regulatory genes in B. trispora.
Key words:  Blakeslea trispora    electrotransformation    protoplast    transformation efficiency
收稿日期:  2022-06-21      修回日期:  2022-06-30           出版日期:  2022-10-25      发布日期:  2022-11-18      期的出版日期:  2022-10-25
基金资助: 国家自然科学基金项目(21878123);农业农村部饲料生物技术重点实验室开放课题项目(KLFB-FRI-202001);微生物技术国家重点实验室开放课题项目(M2020-06)
作者简介:  硕士研究生(罗玮副教授为通信作者,E-mail:wluo@jiangnan.edu.cn)
引用本文:    
沈思巧,杨培龙,曲音波,等. 基于电击策略的三孢布拉霉遗传转化体系的优化及应用[J]. 食品与发酵工业, 2022, 48(20): 15-21.
沈思巧,杨培龙,曲音波,et al. Optimization and application of the genetic transformation system based on electroshock strategy for Blakeslea trispora[J]. Food and Fermentation Industries, 2022, 48(20): 15-21.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.032744  或          http://sf1970.cnif.cn/CN/Y2022/V48/I20/15
[1] PAPAIOANNOU E H, LIAKOPOULOU K M.Substrate contribution on carotenoids production in Blakeslea trispora cultivations[J].Food Bioprod Process, 2010, 88(C2-3):305-311.
[2] LUO W, GONG Z Y, LI N, et al.A negative regulator of carotenogenesis in Blakeslea trispora[J].Applied and Environmental Microbiology,2020, 86(6):e02462-e02419.
[3] LUO W, XUE C, ZHAO Y, et al.Blakeslea trispora photoreceptors:Identification and functional analysis[J].Applied and Environmental Microbiology, 2020, 86(8):e02962-e02919.
[4] SILVA F, TORRES MARTíNEZ S, GARRE V.Distinct white collar-1 genes control specific light responses in Mucor circinelloides[J].Molecular Microbiology, 2006, 61(4):1 023-1 037.
[5] 李娜, 曲音波, 杨培龙, 等.三孢布拉霉遗传转化体系的构建及应用[J].食品与生物技术学报, 2021, 40(9):33-39.LI N, QU Y B,YANG P L, et al.Construction and application of genetic transformation system in Blakeslea trispora[J].Journal of Food Science and Biotechnology, 2021,40(9):33-39.
[6] 巩尊洋, 罗玮, 杜瑶, 等.crgA调控三孢布拉霉合成类胡萝卜素[J].微生物学报, 2017, 57(10):1 527-1 535.GONG Z Y, LUO W, DU Y et al.Regulation effect of crgA on carotenoid production in Blakeslea trispora[J].Acta Microbiologica Sinica, 2017, 57(10):1 527-1 535.
[7] WANG Y L, PANG J, ZHENG Y M, et al.Genetic manipulation of the bifunctional gene, carRA, to enhance lycopene content in Blakeslea trispora[J].Biochemical Engineering Journal, 2017, 119(15):27-33.
[8] LI D D, TANG Y, LIN J, et al.Methods for genetic transformation of filamentous fungi[J].Microbial Cell Factories, 2017, 16(1):168-181.
[9] HAN G M, SHAO Q, LI C, et al.An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus[J].The Journal of Microbiology, 2018, 56(5):356-364.
[10] 刘建雨, 张美彦, 张丹, 等.电击法转化金针菇菌丝碎片表达报告基因eGFP及GUS的研究[J].食用菌学报, 2018, 25(2):23-28.LIU J Y, ZHANG M Y, ZHANG D, et al.Electroporation of mycelial fragments to express reporter genes eGFP and GUS in Flammulina velutipes[J].Acta Edulis Fungi, 2018, 25(2):23-28.
[11] 沈慧敏, 李超, 高利 等.原生质体法介导真菌遗传转化的研究进展[J].植物保护, 2017, 43(2):25-28;42.SHEN H M, LI C, GAO L, et al.Research progress in transformation of fungi mediated by protoplasts[J].Plant Protection, 2017, 43(2):25-28;42.
[12] KATAYAMA T, NAKAMURA H, ZHANG Y, et al.Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae[J].Applied and Environmental Microbiology, 2019, 85(3):e01896-e01818.
[13] 董雪田. 三孢布拉霉中光照对类胡萝卜素生物合成的影响及其部分调控元件的初步挖掘[D].无锡:江南大学, 2022.DONG X T.The effect of light on carotenoid biosynthesis and the preliminary exploration of some regulatory elements in Blakeslea trispora[D].Wuxi:Jiangnan University, 2022.
[14] YOSHIMI A, MIYAZAWA K, ABE K.Function and biosynthesis of cell wall alpha-1,3-glucan in Fungi[J].J Fungi, 2017, 3(4):E63.
[15] ARANDA M A, LOPEZ M F, LOPEZ L L V.Cell wall composition plays a key role on sensitivity of filamentous fungi to chitosan[J].Journal of Basic Microbiol, 2016, 56(10):1 059-1 070.
[16] RUIZ HERRERA J, ORTIZ CASTELLANOS L.Cell wall glucans of fungi.A review[J].The Cell Surface, 2019, 5:100022.
[17] GARCIA -RUBIO R, DE OLIVEIRA H C, RIVERA J, et al.The fungal cell wall:Candida, Cryptococcus, and Aspergillus species[J].Frontiers in Microbiology, 2020, 10(13):2993.
[18] 董雪田, 朱恺丽, 曲音波, 等.一种快速提取三孢布拉霉基因组的方法[J].食品与生物技术学报, 2021, 40(10):63-71.DONG X T, ZHU K L, QU Y B, et al.Rapid method of genome extraction of Blakeslea trispora[J].Journal of Food Science and Biotechnology, 2021, 40(10):63-71.
[19] 李晔. RNA干扰三孢布拉氏霉菌番茄红素环化酶基因的研究[D].北京:北京化工大学, 2009.LI Y.Study on silencing of the carra gene by RNA interfetrnce in filamentous fungus Blakeslea trispora[D].Beijing:Beijing University of Chemical Technology, 2009.
[20] WEAVER J C.Electroporation of biological membranes from multicellular to nano scales[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(5):754-768.
[21] PALOMINO M M, ALLIEVI M C, PRADO A M, et al.New method for electroporation of Lactobacillus species grown in high salt[J].Journal of Microbiol Methods, 2010, 83(2):164-167.
[22] 于建宁, 宋小敬, 王公金, 等.乳酸乳球菌电转化方法的优化[J].江苏农业科学, 2013, 41(8):34-36.YU J N, SONG X J, WANG G J, et al.Optimization of electrotransformation method of Lactococcus lactis[J].Jiangsu Agricultural Sciences, 2013, 41(8):34-36.
[23] ZHOU J L, LIU X B, YUAN F W, et al.Biocatalysis of heterogenously-expressed chitosanase for the preparation of desirable chitosan oligosaccharides applied against phytopathogenic fungi[J].ACS Sustainable Chemistry & Engineering, 2020, 8(12):4 781-4 791.
[24] SCHMIDT A D, HEINEKAMP T, MATUSCHEK M, et al.Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR[J].Applied Microbiology and Biotechnology, 2005, 67(4):549-555.
[25] MATSU URA T, BAEK M, KWON J, et al.Efficient gene editing in Neurospora crassa with CRISPR technology[J].Fungal Biology and Biotechnology, 2015, 2(4).DOI:10.1186/S40694-015-0015-1.
[26] POHL C, KIEL J A K W, DRIESSEN A J M, et al.CRISPR/Cas9 Based genome editing of Penicillium chrysogenum[J].ACS Synthetic Biology, 2016, 5(7):754-764.
[27] ZHENG Y M, LIN F L, GAO H, et al.Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology[J].Scientific Reports, 2017, 7(1):9250.
[1] 李岑, 刘松, 堵国成. 黑曲霉转化系统的优化及重组菌株高效筛选[J]. 食品与发酵工业, 2022, 48(3): 1-8.
[2] 韦云莹, 赵燕, 庄金伟, 李江, 帕米拉·乃则木丁, 陆祎晟, 艾连中, 熊智强. 利用响应面法优化发酵乳杆菌AR497电转化条件[J]. 食品与发酵工业, 2019, 45(7): 52-58.
[3] 洛雪, 时旭, 史海粟, 杜阿楠, 陈茜, 乌日娜, 武俊瑞. 嗜热链球菌的电转化条件[J]. 食品与发酵工业, 2019, 45(6): 65-69.
[4] 杜林娜, 魏东旭, 李秀兰, 等. 细脚拟青霉RCEF4339原生质体制备工艺优化[J]. 食品与发酵工业, 2018, 44(7): 69-75.
[5] 宋宇航,倪丽娟,张白曦,陈卫,张灏. 含油酸培养基培养对重组解脂耶氏酵母全细胞催化合成反10,顺12-共轭亚油酸的影响[J]. 食品与发酵工业, 2016, 42(10): 1-.
[6] 罗玮,周雅,巩尊洋,杜瑶,顾秋亚,余晓斌. 丝状真菌三孢布拉霉产番茄红素发酵条件优化[J]. 食品与发酵工业, 2015, 41(12): 126-.
[7] 裴敏,王强,罗玮,顾秋亚,巩尊洋,余晓斌. N+注入番茄红素生产菌株的选育及基因转录分析[J]. 食品与发酵工业, 2015, 41(11): 70-.
[8] 王伟洁, 李红梅, 薛芳, 高露娇, 黄艳青,. 产胸苷磷酸化酶短乳杆菌融合菌株的构建及其特性[J]. 食品与发酵工业, 2013, 39(08): 20-25.
[9] 王远山,牛鑫淼,郑裕国. 游动放线菌原生质体诱变选育阿卡波糖高产菌株[J]. 食品与发酵工业, 2013, 39(05): 37-43.
[10] 王玲,黄和,匡钰. 自选菠萝果酒酵母菌的诱变育种[J]. 食品与发酵工业, 2012, 38(11): 96-100.
[11] 刘春梅,李树,董传亮,赵福林,毛忠贵. Genome shuffling技术改造ε-聚赖氨酸重组菌Streptomyces sp. Feel-1[J]. 食品与发酵工业, 2012, 38(08): 36-41.
[12] 万翠香,章昭琳,王报贵,魏华. 双歧杆菌原生质体的制备及其转化系统的建立[J]. 食品与发酵工业, 2012, 38(06): 61-65.
[13] 刘雪,许杨,李燕萍,涂追,雷达. 米曲霉3.951菌株与RIB40菌株高产原生质体的制备及再生条件的研究[J]. 食品与发酵工业, 2012, 38(04): 57-61.
[14] 李文,王陶,李同祥. 氯化锂诱变黑曲霉原生质体选育高产植酸酶菌株[J]. 食品与发酵工业, 2012, 38(02): 69-73.
[15] 代兴华,蔡爱华,张厚瑞,覃香香. 基因组改组技术及其在工业微生物改良中的应用[J]. 食品与发酵工业, 2011, 37(07): 142-147.
[1] JI Xiao-kai et al. Research advance in the effect of electric alstimulation on beef quality[J]. Food and Fermentation Industries, 2017, 43(11): 244 .
[2] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[3] . Test Study on Extruded Maize without Germ Used as Beer Adjunct[J]. Food and Fermentation Industries, 2002, 28(5): 35 .
[4] XU Yong-jie,ZHANG Long,PAN Long,CHEN Xu-sheng,MAO Zhong-gui. Optimization of ε-poly-L-lysine production with glucose as carbon source by Streptomyces albulus M-Z18[J]. Food and Fermentation Industries, 2017, 43(9): 46 .
[5] . [J]. Food and Fermentation Industries, 2004, 30(4): 112 .
[6] FENG Yin-xing,LI Bian-sheng. Effect of the fruit maturities on the quality of freeze-dried kiwifruit slices[J]. Food and Fermentation Industries, 2017, 43(9): 144 .
[7] Chi Naiyu,Zhang Qingfang,Dou Shaohua,Tang Qian,Yuan Yulian. The Screening of the Marine Low Temperature Acid Protease Strain from Bacillus subtilis and Its Optimal Fermentation Medium (Ⅰ)[J]. Food and Fermentation Industries, 2006, 32(3): 4 .
[8] Ai Lijing,Rao Zhiming,Shen Wei,Fang Huiying,Zhuge Jian. Isolation and Primary Identification of Glutathion-producing Yeast Strains[J]. Food and Fermentation Industries, 2006, 32(3): 18 .
[9] Huang Cheng,Yin Hong,Shen Wucheng,Xia Xiannian. The Influence of Hydrophilic Material on Low-sugar Carrot Preserved Fruit Moisture Activation[J]. Food and Fermentation Industries, 2006, 32(3): 44 .
[10] Qian Ying,Duan Gang. Preparation of Un-denatured High Purity of Rice Protein with New Enzymes[J]. Food and Fermentation Industries, 2006, 32(4): 61 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn