Please wait a minute...
 
 
食品与发酵工业  2010, Vol. 36 Issue (03): 1-4    DOI: 10.13995/j.cnki.11-1802/ts.2010.03.011
  食品与发酵工业 本期目录 | 过刊浏览 | 高级检索 |
碳源对里氏木霉纤维素酶诱导合成的影响
吕雄,赵晶,夏黎明
Effects of Different Carbon Sources on Cellulase Production by Trichoderma reesei
Lv Xiong, Zhao Jing, Xia Liming
下载:  HTML   PDF (248KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素酶是诱导酶,理想的碳源应该既能提供菌种生长所需能量,又能诱导纤维素酶基因的高效表达。试验中分别以葡萄糖经过转糖苷反应后制备的复合糖(F)、微晶纤维素(C)以及上述两者(1∶2)的混合物(M)为里氏木霉(Trichoderma Reesei ZU-04)的碳源,在液态深层发酵条件下生产纤维素酶。对纤维素酶酶系组成的研究结果表明:F碳源诱导作用下,内切型-β-葡聚糖酶(Cx酶)和外切型-β-葡聚糖酶(C1酶)的活力在发酵初期上升很快,通常在40h左右达到峰值,此后活力呈下降趋势,而β-葡萄糖苷酶(CB酶)的活力始终较低;C碳源诱导作用下,Cx、C1和CB酶的活力上升在发酵初期比较缓慢,但持续时间长、后劲足;在采用M碳源的情况下,Cx、C1酶的初始合成速度较快,且2种酶的活力在较长时间内保持上升趋势。与F和C碳源相比,Cx酶活力分别提高了78.2%和51.9%,C1酶活力分别提高了20.6%和6.5%,但对CB酶的生产而言,M碳源略低于C碳源,F碳源最差。进一步研究了碳源对纤维素酶总活力(滤纸酶活力)的影响,结果显示:在采用F碳源的条件下,发酵6h即可检测到滤纸酶活力,在36h达到峰值1.6IU/mL,此后活力不再上升;在采用C碳源时,发酵初期酶活力上升缓慢,产酶周期较长,滤纸酶活力在144h达到峰值3.96IU/mL;而M碳源可结合两者优势,使纤维素酶活力和产率都能达到较高的水平。研究结果对于定向调控纤维素酶的酶系组成,提高纤维素酶的生产效率具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕雄
赵晶
夏黎明
关键词:  纤维素酶  复合糖  微晶纤维素  酶系组成  诱导合成    
Abstract: Cellulase can be induced by different inducers. A desirable carbon source should support the growth of microorganisms and induce the expression of cellulase genes effectively. Self-made sugar mixture obtained by transglycosylation from glucose (F carbon source),microcrystalline cellulose (C carbon source) and the multiple carbon source (M carbon source,mixture of F and C in the ratio 1:2) were applied in the submerged fermentation of cellulase with Trichoderma Reesei ZU-04. Properties of carbon sources were found to have different effects on the cellulase components. On F carbon source,the enzyme activities of endo-β-1,4-glucanase (Cx),exo-β-1,4-glucanase (C1) increased quickly and reached their peak value at around 40 h,but the activity of (-glucosidase(CB) were remained extremely low throughout the process. On C carbon source,the activities of Cx,C1 and CB grew slowly at the initial stage,but the production cycle sustained longer with the continuous increase of enzyme activities. M carbon source could both accelerate the formation rate and enhance the production sustainability of Cx and C1,Cx activities increased by 78.2% and 51.9%,and C1 activities increased by 20.6% and 6.5% compared with those produced by C and F carbon sources respectively. As to the β-glucosidase production,the F carbon source was the worst among all,and C carbon source was better than M carbon source. The influence of different carbon sources on filter paper activities was further studied. F carbon source produced the highest filter paper activity of 1.60 IU/mL within 36 h,featured by a rapid celluase formation rate,yet unsustainable production cycle. Filter paper activity induced by C carbon source reached a maximum of 3.96 IU/mL within 144 h,yet,cellulase activity increased slowly at the initial stage and cellulase production cycle lasted longer. Combined the advantages of F and C,M carbon source could maintain both filter paper activity and productivity at relatively high levels. The results are of great significance in improvement of cellulase productivity and regulation of cellulase system.
Key words:  cellulase    sugar mixture    microcrystalline cellulose    cellulase components    synergetic induction
               出版日期:  2010-03-25      发布日期:  2010-03-25      期的出版日期:  2010-03-25
引用本文:    
吕雄,赵晶,夏黎明. 碳源对里氏木霉纤维素酶诱导合成的影响[J]. 食品与发酵工业, 2010, 36(03): 1-4.
Lv Xiong,Zhao Jing,Xia Liming. Effects of Different Carbon Sources on Cellulase Production by Trichoderma reesei[J]. Food and Fermentation Industries, 2010, 36(03): 1-4.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.2010.03.011  或          http://sf1970.cnif.cn/CN/Y2010/V36/I03/1
[1] 王巧莉, 孔梓璇, 谭强飞, 贠建民, 张紊玮, 赵风云. 草菇组织分离继代中菌种退化对相关酶活力的影响[J]. 食品与发酵工业, 2021, 47(8): 1-5.
[2] 文晓霞, 白光剑, 李韬, 马一凡, 邹伟. 液态发酵原位酶解糖化水稻秸秆工艺优化[J]. 食品与发酵工业, 2021, 47(4): 166-172.
[3] 陈致印, 刘伟鹏, 王盈希, 曾立, 向国红, 刘桃李, 龚意辉. 三种不同改性方法对甘薯渣不溶性膳食纤维改性效果的研究[J]. 食品与发酵工业, 2021, 47(2): 57-62.
[4] 宋丽丽, 闻格, 霍姗浩, 胡晓龙, 杨旭, 张志平. 白酒酒糟中产纤维素酶细菌的分离筛选和酶学性质研究[J]. 食品与发酵工业, 2020, 46(7): 43-49.
[5] 汪楠, 黄山, 张月, 张甫生, 郑炯. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业, 2020, 46(4): 13-18.
[6] 杨阳, 王松涛, 许正宏, 史劲松. 半纤维素的微生物酶促降解及其在酿造中的应用[J]. 食品与发酵工业, 2020, 46(23): 255-262.
[7] 李豪, 邹伟, 白光剑, 徐静. 高产纤维素酶真菌的筛选及鉴定[J]. 食品与发酵工业, 2019, 45(6): 54-58.
[8] 肖瑶, 杨建远, 张炳火, 王萍兰, 杨云仙, 查代明. 白耙齿菌F036液态发酵产纤维素酶条件优化及纤维素酶酶学性质初步研究[J]. 食品与发酵工业, 2019, 45(6): 70-76.
[9] 何颂捷, 左勇, 张鑫, 孙时光, 秦世蓉, 杨建飞, 徐佳, 黄雪芹. 降解白酒酒糟中纤维素的细菌的分离鉴定[J]. 食品与发酵工业, 2019, 45(24): 64-70.
[10] 章亭洲, 朱廷恒, 王腾浩, 赵艳, 沈炜. 严格厌氧嗜热纤维梭状芽孢杆菌产纤维素酶条件的优化[J]. 食品与发酵工业, 2019, 45(22): 185-189.
[11] 李豪, 白光剑, 吴静, 杨海泉, 邹伟. 紫外-常压室温等离子体复合诱变高产纤维素酶真菌[J]. 食品与发酵工业, 2019, 45(15): 81-86.
[12] 刘军 , 江若宇 , 王麒麟 , 等. 四川晒醋醋醅中一株产纤维素酶的芽孢杆菌分离筛选[J]. 食品与发酵工业, 2018, 44(6): 140-144.
[13] 王靖宇, 刘玉春, 韩伟, 等 . 玉米皮纤维发酵裂褶菌的产酶分析及木聚糖酶基因克隆、表达和酶学性质测定[J]. 食品与发酵工业, 2018, 44(5): 46-51.
[14] 曾小峰,彭雪娇,谈安群,王华. 柚皮微晶纤维素的制备及其结构特性研究[J]. 食品与发酵工业, 2016, 42(9): 98-.
[15] 王佳,张颜笑,郑炯. 酶解处理对竹笋膳食纤维理化特性的影响[J]. 食品与发酵工业, 2016, 42(9): 104-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn