Please wait a minute...
 
 
食品与发酵工业  2020, Vol. 46 Issue (13): 119-126    DOI: 10.13995/j.cnki.11-1802/ts.023578
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
长双歧杆菌抗生素初始微生物折点值制定及耐药机制探讨
赵芳1, 赵建新1, 张灏1,2, 陈卫1, 陆文伟1,2*
1(江南大学 食品学院,江苏 无锡,214122)
2(江南大学(扬州)食品生物技术研究所,江苏 扬州,225004)
Establishment of tentative microbiological cut-off values and antibioticresistance analysis of Bifidobacterium longum
ZHAO Fang1, ZHAO Jianxin1, ZHANG Hao1,2, CHEN Wei1, LU Wenwei1,2*
1(School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
2((Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China)
下载:  HTML   PDF (3160KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 长双歧杆菌(Bifidobacterium longum)是食品中常用的益生菌,对其耐药性的判定关系着食品安全。为制定长双歧杆菌抗生素耐药性判定标准,探究其抗生素耐药性的关键基因,参照ISO 10932标准方法,测定了52株B. longum菌株对四环素、红霉素、克林霉素、氨苄青霉素、氯霉素和万古霉素的最小抑菌浓度(minimal inhibitory concentration, MIC),采用Turnidge(T)和Kronvall(K)两种统计学方法制定B. longum六种抗生素的种特异性初始微生物折点值(tentative microbiological cut-off values, TMCOFFs),并从功能基因层面进行耐药机制研究。结果发现:B. longum对四环素、红霉素、克林霉素、氨苄青霉素、氯霉素和万古霉素的种特异性TMCOFFs分别为8、8、0.25、8/2(T/K)、8和2 μg/mL;相应折点值下的耐药率分别为28.85%、25%、28.85%、3.85%/7.69%(T/K)、0和19.23%。通过功能基因和比较基因组分析发现,tet(W)B. longum四环素耐药性的主要抗性基因,erm(X)则介导菌株对红霉素和克林霉素的耐药性,并且耐药基因位于可移动遗传元件上;系统进化分析发现不同耐药型菌株的tet(W)erm(X)基因序列存在显著差异。该研究对B. longum在食品中的安全应用以及益生菌耐药性评价标准的制定具有指导意义和参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵芳
赵建新
张灏
陈卫
陆文伟
关键词:  长双歧杆菌  抗生素耐药性  微生物折点值  耐药基因  系统进化    
Abstract: Bifidobacterium longum is a commonly used probiotic in food industry, and its drug resistance is related to food safety issues. The objective of this study was to formulate antibiotic resistance determination criteria for B. longum and to explore the key genes of antibiotic resistance through functional gene analysis. The minimum inhibitory concentrations of 52 B. longum strains towards tetracycline, erythromycin, clindamycin, ampicillin, chloramphenicol, and vancomycin were determined with reference to ISO standard methods (ISO 10932). The species-specific microbiological cut-off values of these six antibiotics of B. longum were evaluated by Turnidge (T) and Kronvall (K) statistical methods and analyzed the antibiotic resistance mechanism from the molecular genetic basis. The results showed that the species-specific microbiological cut-off values for tetracycline, erythromycin, clindamycin, ampicillin, chloramphenicol, and vancomycin of B. longum were 8, 8, 0.25, 8/2(T/K), 8 and 2 μg/mL respectively, and the drug resistance rates were 28.85%, 25%, 28.85%, 3.85%/7.69%(T/K), 0 and 19.23%. Functional gene and comparative genomic analysis revealed that tet(W) and erm(X) both located on mobile genetic elements were the main resistance genes for tetracycline resistance and erythromycin and clindamycin resistancein B.longum.Phylogeneticanalysis indicated that the tet(W) and erm(X) gene sequences of different phenotypic resistance strains possessed significant variation. This study has certain guiding significance and reference value for the safety application of B. longum in food and the development of evaluation criteria for probiotics resistance.
Key words:  Bifidobacterium longum    antibiotic resistance    microbiological cut-off value    resistance genes    phylogenetic evolution
收稿日期:  2020-02-10                出版日期:  2020-07-15      发布日期:  2020-08-04      期的出版日期:  2020-07-15
基金资助: 国家自然科学基金(31820103010,31771953)
作者简介:  硕士研究生(陆文伟副研究员为通讯作者,E-mail:luwenwei@jiangnan.edu.cn)
引用本文:    
赵芳,赵建新,张灏,等. 长双歧杆菌抗生素初始微生物折点值制定及耐药机制探讨[J]. 食品与发酵工业, 2020, 46(13): 119-126.
ZHAO Fang,ZHAO Jianxin,ZHANG Hao,et al. Establishment of tentative microbiological cut-off values and antibioticresistance analysis of Bifidobacterium longum[J]. Food and Fermentation Industries, 2020, 46(13): 119-126.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.023578  或          http://sf1970.cnif.cn/CN/Y2020/V46/I13/119
[1] O′CALLAGHAN A,VAN S D.Bifidobacteria and their role as members of the human gut microbiota[J].Frontiers in Microbiology,2016,7:925.
[2] 丁喜顺.长双歧杆菌细胞壁完整肽聚糖的分离及其免疫、抑瘤活性的研究[D].呼和浩特:内蒙古农业大学,2009.
[3] 闫爽.长双歧杆菌遗传与表型多样性及其与免疫调节功能的相关性研究[D].无锡:江南大学,2019.
[4] JANINA M,ANNETTE H,CLAUDIUS M,et al.Efficacy of Bifidobacterium longum, B. infantis and Lactobacillus acidophilus probiotics to prevent gut dysbiosis in preterm infants of 28+0-32+6 weeks of gestation: a randomised, placebo-controlled, double-blind, multicentre trial: the PRIMAL clinical study protocol[J].BMJ Open,2019,9(11):e032617.
[5] INTURRI R,TROVATO L,VOLTI G L,et al.In vitro inhibitory activity of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 alone or in combination against bacterial and Candida reference strains and clinical isolates[J].Heliyon,2019,5(11):e02891.
[6] MIJOO C,YUNJUNG L,NA-KYOUNG L,et al.Immunomodulatory effects by Bifidobacterium longum KACC 91563 in mouse splenocytes and macrophages[J].Journal of Microbiology and Biotechnology,2019,29(11):1 739-1 744.
[7] 丁圣,蒋菁莉,刘松玲,等.长双歧杆菌BBMN68对便秘模型小鼠的通便作用[J].食品科学,2011,32(3):195-198.
[8] XIAO J Z,KONDO S,TAKAHASHI N,et al.Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers[J].Journal of Dairy Science,2003,86(7):2 452-2 461.
[9] OTHMAN M B,SAKAMOTO K.Effect of inactivated Bifidobacterium longum intake on obese diabetes model mice (TSOD)[J].Food Research International,2020,129(108 792).
[10] FAHMY C A,GAMAL-ELDEEN A M, EL-HUSSIENY E A,et al.Bifidobacterium longum suppresses murine colorectal cancer through the modulation of oncomi.Rs and tumor suppressor miRNAs[J].Nutrition and Cancer,2019,71(4):688-700.
[11] EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards).Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update)[J].EFSA Journal,2013,11(11):3 449.
[12] 潘伟好,李平兰,孙承虎.双歧杆菌的药敏性及其质粒DNA的检测[J].食品科学,2005,26(6):81-86.
[13] DURANTI S,LUGLI G A,MANCABELLI L,et al.Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria[J].Applied and Environmental Microbiology,2016,83(3):e02 894-16.
[14] FOUHY F,O’CONNELL M M,FITZGERALD G F,et al.In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams[J].PloS One,2013,8(12):e82653.
[15] 罗义,周启星.抗生素抗性基因(ARGs)——一种新型环境污染物[J].环境科学学报,2008,28(8):1 499-1 505.
[16] European Food Safety Authority (EFSA).Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance[J].EFSA Journal,2012,10(6):2 740.
[17] European Committee on Antimicrobial Susceptibility Testing.MIC distributions and epidemiological cut-off value (ECOFF) setting[P].EUCAST SOP 10.0,2017.http://www.eucast.org.
[18] KLARE I, KONSTABEL C, WERNER G,et al.Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use[J].Journal of Antimicrobial Chemotherapy,2007,59(5):900-912.
[19] International Stardand Organization (ISO).Milk and milk products-determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and non-enterococcal lactic acid bacteria (LAB)[S].ISO,2010.
[20] TURNIDGE J,KAHLMETER G,KRONVALL G.Statistical characterisation of bacterial wild-type MIC value distributions and the determination of microbiological cut-off values[J].Clinical Microbiology and Infection,2006,12(5):418-425.
[21] KRONVALL G.Normalized resistance interpretation as a tool for establishing epidemiological MIC susceptibility breakpoints[J].Journal of Clinical Microbiology,2010,48(12):4 445-4 452.
[22] European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST general consultation on “considerations in the numerical estimation of epidemiological cutoff (ECOFF) values”[J].EUCAST,2018.
[23] CAMPEDELLI I,MATHUR H,SALVETTI E,et al.Genus-wide assessment of antibiotic resistance in Lactobacillus spp.[J].Applied and Environmental Microbiology,2019,85(1):e01 738-18.
[24] HU Y,YANG X,LI J,et al.The bacterial mobile resistome transfer network connecting the animal and human microbiomes[J].Applied and Environmental Microbiology,2016,82(22):6 672-6 681.
[25] 迟星云,朱晓莉,王虹,等.重症监护病房多重耐药菌检出及药物敏感性[J].中华医院感染学杂志,2019,29(24):3 729-3 733.
[26] MARTíNEZ N,LUQUE R,MILANI C,et al.A gene homologous to rRNA methylase genes confers erythromycin and clindamycin resistance in Bifidobacterium breve[J]. Applied and Environmental Microbiology,2018,84(10):e02 888-17.
[27] WEI Y X.Safety assessment of Bifidobacterium longumJDM301 based on complete genome sequences[J].World Journal of Gastroenterology,2012,18(5):479-488.
[1] 陈志娜, 裴纪柳, 叶韬, 薛咏振, 詹志强, 李雅, 刘天. 泡菜源屎肠球菌Enterococcus faecium R2的环境胁迫耐受性及安全性评价[J]. 食品与发酵工业, 2019, 45(22): 32-38.
[2] 李明洁, 杨波, 赵建新, 张灏, 陈卫. 长双歧杆菌婴儿亚种的快速区分[J]. 食品与发酵工业, 2019, 45(18): 43-49.
[3] 李晓姝, 殷瑞敏, 毛丙永, 崔树茂, 赵建新. 副干酪乳杆菌的基因多样性及其抗生素耐受性分析[J]. 食品与发酵工业, 2019, 45(14): 1-8.
[4] 赵雪婷,彭珍,胡敏,黄涛,熊涛. 三株人源干酪乳杆菌的益生特性[J]. 食品与发酵工业, 2019, 45(12): 15-19.
[5] 刘洋 , 张欣 , 陈建国 , 等. 粪肠球菌Enterococcus faecalis EC-12的万古霉素耐药基因检测 [J]. 食品与发酵工业, 2018, 44(3): 226-.
[6] 吴林昊,钱宇,汪慧超,薛秀恒. ClassⅡ细菌素乳酸菌的筛选与定性及群体感应系统鉴定[J]. 食品与发酵工业, 2017, 43(4): 15-.
[7] 鲁曦,张志刚,陈妙瑞,闫鹤,石磊. PCR法及环介导等温扩增法筛查食源微生物的耐药基因[J]. 食品与发酵工业, 2012, 38(02): 180-185.
[8] 麻士卫,高鹏飞,王秋实,阎建军,邓承远,赵虎云. 益生菌咀嚼片硬度与益生菌细胞存活率的关系[J]. 食品与发酵工业, 2009, 35(6): 50-.
[9] 丁喜顺,邓承远,冯谦,刘彦民,金海. 长双歧杆菌细胞壁完整肽聚糖分离鉴定的研究[J]. 食品与发酵工业, 2009, 35(4): 62-.
[10] 刘凌,孙慧. 桃渣可溶性膳食纤维组成及生理活性[J]. 食品与发酵工业, 2008, 34(9): 69-.
[11] 刘丽凤,孟祥晨. 冷冻干燥对长双歧杆菌损伤作用的研究[J]. 食品与发酵工业, 2007, 33(12): 32-.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn