研究报告

通过定点突变提高纳豆激酶的酶活及热稳定性

  • 赵菡 ,
  • 周丽 ,
  • 周哲敏
展开
  • (江南大学 生物工程学院,工业生物技术教育部重点实验室,江苏 无锡,214122)
硕士研究生(周哲敏教授为通讯作者,E-mail:zhmzhou@jiangnan.edu.cn)。

收稿日期: 2018-01-31

  网络出版日期: 2018-10-30

基金资助

国家自然科学基金项目(31300087);基本科研-重点项目(JUSRP51611A)

Enhancing the thermostability and activity of nattokinase by site-directed mutagenesis

  • ZHAO Han ,
  • ZHOU Li ,
  • ZHOU Zhe-min
Expand
  • (School of Biotechnology and the Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2018-01-31

  Online published: 2018-10-30

摘要

纳豆激酶(Nattokinase,NK,EC3.4.21.62)是日本传统食品纳豆在发酵过程中产生的具有很强溶栓活性的枯草杆菌蛋白酶,热稳定性较差,不利于在工艺生产中高温环节保证酶活,限制了其生产应用。在蛋白质中,脱酰胺过程将天冬酰胺和谷氨酰胺转化为带负电的天冬氨酸和谷氨酸,可能改变蛋白质的结构进而影响酶的活性、最适pH值和稳定性等。因此,模拟此过程可以高效改造目的酶。为提高纳豆激酶的酶活及稳定性,将位于纳豆激酶表面的天冬酰胺和谷氨酰胺分别突变为天冬氨酸和谷氨酸。通过筛选得到酶活提高突变体Q59E(约为野生型酶的1.54倍)以及热稳定性提高的突变体N218D。双突变体Q59E-N218D的热稳定性进一步提高,半衰期(t 1/2, 33 min)提高为野生型酶(t 1/2, 12 min)的2.75倍,并且酶活达到与原始酶相似水平。

本文引用格式

赵菡 , 周丽 , 周哲敏 . 通过定点突变提高纳豆激酶的酶活及热稳定性[J]. 食品与发酵工业, 2018 , 44(9) : 36 -40 . DOI: 10.13995/j.cnki.11-1802/ts.016991

Abstract

Nattokinase (NK, EC3.4.21.62) is a bacterial serine protease derived from the traditional Japanese food natto with strong fibinolytic activity. However, the thermal stability of NK is too low to ensure high enzyme activity in the production process, and thus limits its production and application. Proteins deamidation process converts asparagine (Asn) and glutamine (Gln) residues into negatively charged aspartate (Asp) and glutamic acid (Glu),which may change the local structure of protein and affect the enzyme activity, pH optimum, and stability. Therefore, simulating this process can efficiently modify the target enzyme. In order to improve the activity and stability of NK, Asn and Gln located on the surface were mutated to Asp and Glu, respectively. The mutant Q59E with increased activity (about 1.54 times of the wild type) and mutant N218D with increased thermal stability were obtained. The thermal stability of the double mutant Q59E-N218D was further improved, and its half-life (t1/2, 33 min) was 2.75 times of that of the wild type NK (t1/2, 12 min). It provides a method for enzyme engineering and a new enzyme material for the industrial application of NK.

参考文献

[1] BRYAN P N.Protein engineering of subtilisin[J].Biochimica Et Biophysica Acta,2000,1543(2):203-222.
[2] MARTINEZ R,JAKOB F,TU R,et al.Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution[J].Biotechnology & Bioengineering,2013,110(3):711-720.
[3] WENG M,DENG X,BAO W,et al.Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation[J].Biochemical & Biophysical Research Communications,2015,465(3):580-586.
[4] RUAN B,LONDON V,FISHER K E,et al.Engineering substrate preference in subtilisin:structural and kinetic analysis of a specificity mutant[J].Biochemistry,2008,47(25):6 628.
[5] DOHNALEK J,MCAULEY K,BRZOZOWSKI A,et al.Understanding enzymes:Function,design,engineering,and analysis[M].Singapore:Pan Stanford Publishing Pte. Ltd,2016:203-265.
[6] NAKAMURA T,YAMAGATA Y,ICHISHIMA E.Nucleotide sequence of the subtilisin NAT gene,aprN,of Bacillus subtilis (natto)[J].Bioscience Biotechnology & Biochemistry,1992,56(11):1 869-1 871.
[7] URANO T,IHARA H,UMEMURA K,et al.The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis cleaves and inactivates plasminogen activator inhibitor type 1[J].Journal of Biological Chemistry,2001,276(27):24 690.
[8] FUJITA M, ITO Y, HONG K,et al.Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin[J].Fibrinolysis,1995,9(3):157-164.
[9] DABBAGH F,NEGAHDARIPOUR M,BERENJIAN A,et al.Nattokinase:production and application[J].Applied Microbiology & Biotechnology,2014,98(22):9 199.
[10] 何孝天.Bacillus natto纳豆激酶的重组表达及热稳定性改造[D].无锡:江南大学,2014.
[11] BISCHOFF R,SCHLUTER.Amino acids:Chemistry,functionality and selected non-enzymatic post-translational modifications[J].Journal of Proteomics,2012,75(8):2 275.
[12] KATO A,TANIMOTO S,MURAKI Y,et al.Structural and functional properties of hen egg-white lysozyme deamidated by protein engineering[J].Journal of the Agricultural Chemical Society of Japan,1992,56(9):1 424.
[13] JAKOB F,MARTINEZ R,MANDAWE J,et al.Surface charge engineering of a Bacillus gibsonii subtilisin protease[J].Applied Microbiology & Biotechnology,2013,97(15):6 793-6 802.
[14] KHURANA J,SINGH R,KAUR J.Engineering of Bacillus lipase by directed evolution for enhanced thermal stability:effect of isoleucine to threonine mutation at protein surface[J].Molecular Biology Reports,2011,38(5):2 919.
[15] PANTOLIANO M W,WHITLOW M,WOOD J F,et al.Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding[J].Biochemistry,1989,28(18):7 205-7 213.
[16] DE K A,VAN D B B,VENEMA G,et al.The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease[J].Journal of Biological Chemistry,2002,277(18):15 432.
[17] JAOUADI B,AGHAJARI N,HASER R,et al.Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis[J].Biochimie,2010,92(4):360.
[18] MIYAZAKI K,WINTRODE,GRAYLING R,et al.Directed evolution study of temperature adaptation in a psychrophilic enzyme 1[J].Journal of Molecular Biology,2000,297(4):1 015-1 026.
[19] STUDIER F W.Protein production by auto-induction in high density shaking cultures[J].Protein Expression & Purification,2005,41(1):207-234.
文章导航

/