[1] WANG Y, BEYDOUN M A, LIANG L, et al. Will all americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic[J]. Obesity, 2008, 16(10):2 323-2 330.
[2] ECKEL R H, ALBERTI K G M M, GRUNDY S M, et al. The metabolic syndrome[J]. Lancet, 2015, 365(9 468):1 415-1 428.
[3] LEY R. Microbial ecology: human gut microbes associated with obesity[J]. Nature, 2006, 444(7 122):1 022-1 023.
[4] ZMORA N, BASHIARDES S, LEVY M, et al. The role of the immune system in metabolic health and disease[J]. Cell Metabolism, 2017, 25(3):506-521.
[5] QIN J, LI Y, CAI Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2013, 490(7418):55-60.
[6] HAND T W, VUJKOVIC-CVIJIN I, RIDAURA V K, et al. Linking the microbiota, chronic disease, and the immune system[J]. Trends in Endocrinology & Metabolism Tem, 2016, 27(12):831-843.
[7] MACFARLANE G T, MACFARLANE S. Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut[J]. Current Opinion in Biotechnology, 2007, 18(2):156-162.
[8] VIJAYKUMAR M, AITKEN J D, CARVALHO F A, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5[J]. Science, 2010, 328(5 975):228-231.
[9] GAFFEN S L, JAIN R, GARG A V, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing[J]. Nature Reviews Immunology, 2014, 14(9):585-600.
[10] DUPONT A W, DUPONT H L. The intestinal microbiota and chronic disorders of the gut[J]. Nature Reviews Gastroenterology & Hepatology, 2011, 8(9):523-531.
[11] BROWN J M, HAZEN S L. Microbial modulation of cardiovascular disease[J]. Nature Reviews Microbiology, 2018,16(3):171-181.
[12] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7 484):559-563.
[13] GIBSON G R, PROBERT H M, LOO J V, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics[J]. Nutrition Research Reviews, 2004,17(2):259-275.
[14] MACCALLUM I, PRZYBYLSKI D, GNERRE S, et al. ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads[J]. Genome Biology, 2009, 10(10):R103.
[15] LOMAN N J, CONSTANTINIDOU C, CHAN J Z, et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity[J]. Nature Reviews Microbiology, 2012, 10(9):599-606.
[16] SABIROVA J S, XAVIER B B, COPPENS J, et al. Whole-genome typing and characterization of blaVIM19-harbouring ST383 Klebsiella pneumoniae by PFGE, whole-genome mapping and WGS[J]. Journal of Antimicrobial Chemotherapy, 2016, 71(6):1 501-1 509.
[17] TYAGI A K, SAHDEO P. Commentary: Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis[J]. Frontiers in Microbiology, 2015, 5:766.
[18] MAO B, LI D, ZHAO J, et al. Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice[J]. Journal of Agricultural & Food Chemistry, 2015, 63(3):856-863.
[19] 毛丙永. 功能性低聚糖对肠道细菌的影响及机制[D]. 无锡:江南大学, 2015.
[20] BI Y, LI C, LIU L, et al. IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice[J]. Science Bulletin, 2017, 62(15):1 052-1 063.
[21] WANG J, TANG H, ZHANG C, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice[J]. Isme Journal, 2015, 9(1):1-15.
[22] KIM S W, PARK K Y, KIM B, et al. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production[J]. Biochemical & Biophysical Research Communications, 2013, 431(2):258-263.
[23] WEST N P, PYNE D B, CRIPPS A, et al. Gut Balance, a synbiotic supplement, increases fecal Lactobacillus paracasei but has little effect on immunity in healthy physically active individuals[J]. Gut Microbes, 2012, 3(3):221-227.
[24] CANI P D, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6):1 470-1 481.
[25] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7 122):1 027-1 231.
[26] LIM S M, KIM D H. Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced colitis in mice by inhibiting NF-κB activation and lipopolysaccharide production by gut microbiota[J]. Nutrition Research, 2017, 41:86-96.
[27] BOSSHARD P P, ZBINDEN R M. Turicibacter sanguinis gen. nov. sp nov. a novel anaerobic, gram-positive bacterium[J]. International Journal of Systematic & Evolutionary Microbiology, 2002, 52(4):1 263-1 266.
[28] PRESLEY L L, WEI B, BRAUN J, et al. Bacteria associated with immunoregulatory cells in mice[J]. Applied & Environmental Microbiology, 2010, 76(3):936-941.
[29] DUNCAN S H, BELENGUER A, HOLTROP G, et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces[J]. Applied & Environmental Microbiology, 2007, 73(4):1 073-1 078.
[30] JAKOBSDOTTIR G, XU J, MOLIN G, et al. High-fat Diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects[J]. Plos One, 2013, 8(11):e80476.