大蒜粒微波-热风联合干燥的工艺优化

  • 李湘利 ,
  • 刘静 ,
  • 侯一超 ,
  • 朱乐乐 ,
  • 马龙传
展开
  • 1(济宁学院 生命科学与工程系,济宁市特色农产品高值化加工工程技术研究中心,山东 曲阜,273155)
    2(东北农业大学 食品学院,黑龙江 哈尔滨,150030)
    3(山东省大蒜工程技术研究中心,山东 济宁,272200)
硕士,副教授(本文通讯作者,E-mail:lixiangli221@yeah.net)。

收稿日期: 2017-11-27

  网络出版日期: 2018-12-25

基金资助

国家级大学生创新创业训练计划项目(201610454 002);山东省农业科技成果转化资金项目(2015NZ08)

Optimization of garlic drying method by microwave and hot air combination

  • LI Xiang-li ,
  • LIU Jing ,
  • HOU Yi-chao ,
  • ZHU Le-le ,
  • MA Long-chuan
Expand
  • 1 (Department of Life Science and Engineering, Jining University; Jining Engineering and Technology Research Center for Special Agricultural Products High Value Processing, Qufu 273155, China)
    2 (College of Food Science, Northeast Agricultural University, Harbin 150030, China)
    3 (Shandong Engineering and Technology Research Centre for Garlic, Jining 272200, China)

Received date: 2017-11-27

  Online published: 2018-12-25

摘要

为优化微波-热风联合干燥大蒜粒的最佳工艺参数,以大蒜粒为试材,以干燥速率、大蒜素含量、感官评分、白度、复水比和综合得分为指标,比较研究不同微波功率密度、不同热风温度对大蒜粒干燥特性和品质的影响,并以微波功率密度、转换点干基水分含量、热风温度为试验因素,设计L9(33)正交试验对微波-热风联合干燥大蒜粒的工艺条件进行优化。结果表明,9.2 W/g微波干燥和70 ℃热风干燥所得大蒜粒干品的综合得分最高,分别为94.698、96.566。微波功率密度对联合干燥大蒜粒的综合得分影响极显著(p<0.01);转换点干基水分含量和热风干燥温度对综合得分无显著影响(p>0.05)。微波-热风联合干燥大蒜粒的最佳工艺条件为先期采用功率密度9.2 W/g微波干燥至转换点(干基水分含量1.200 g/g),后期用热风60 ℃干燥至干基含水量0.100 g/g;在此条件下,联合干燥所得大蒜粒的大蒜素、复水比、白度、感官评分分别为0.956 mg/g、2.699、83.130、83.000,干品综合得分为125.281。因此,微波-热风联合干燥是适合大蒜粒干燥的较好技术方法。

本文引用格式

李湘利 , 刘静 , 侯一超 , 朱乐乐 , 马龙传 . 大蒜粒微波-热风联合干燥的工艺优化[J]. 食品与发酵工业, 2018 , 44(11) : 237 -244 . DOI: 10.13995/j.cnki.11-1802/ts.016362

Abstract

This study aimed to find the optimum conditions of garlic drying by microwave and hot air combination. The influence factors of microwave power density and hot air temperature were investigated using the drying rate, allicin content, sensory quality, whiteness, rehydration ratio and comprehensive scores were chosen as indexes. The combined drying conditions were optimized through L9 (33) orthogonal test with microwave power density, moisture content of conversion point and hot air temperature as experimental factors. The results showed that the comprehensive scores of garlic dried under microwave power at 9.2 W/g and hot air at 70 ℃ were 94.698 and 96.566, respectively. The overall score of garlic was significantly influenced by microwave power density (p<0.01) but not significantly influenced by the conversion point of moisture content and hot air temperature (p>0.05). The optimum conditions of combined microwave and hot air drying were 9.2 W/g microwave to 1.200 g/g moisture content of conversion point, then 60 ℃ hot air drying to 0.100 g/g moisture content. Under these optimum conditions, the content of allicin, rehydration ratio, whiteness, sensory evaluation and comprehensive score were 0.956 mg/g, 2.699, 83.130, 83.000 and 125.281, respectively. Therefore, microwave drying followed by hot air drying was a better method and quite suitable for garlic drying.

参考文献

[1] SULAIMAN F A, KAZEEM M O, WAHEED A M, et al. Antimicrobial and toxic potential of aqueous extracts of Allium sativum, Hibiscus sabdariffa, and Zingiber officinale, in Wistar rats[J]. Journal of Taibah University for Science, 2014, 8(4): 315-322.
[2] MARTINS N, PETROPOULOS S, FERREIRA I C. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review[J]. Food Chemistry, 2016, 211(11): 41-50.
[3] YARAS Q, EMILIAY I, DEBORAHHM B, et al. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity[J]. Food Chemistry, 2009, 115(1): 371-374.
[4] FRATIANNI F, OMBRA M N, COZZOLINO A, et al. Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.)[J]. Journal of Functional Foods, 2016, 21(3): 240-248.
[5] 闫淼淼,许真,徐蝉,等. 大蒜功能成分研究进展[J]. 食品科学, 2010, 31(5): 312-318.
[6] VAZQUEZ-BARRIOS M E, LOPEZ-ECHEVARRIA G, MERCADO-SILVA E, et al. Study and prediction of quality changes in garlic cv. Perla (Allium sativum L.) stored at different temperatures[J]. Scientia Horticulturae, 2006, 108(2): 127-132.
[7] SHARMA G P, PRASAD S. Drying of garlic (Allium sativum) cloves by microwave-hot air combination[J]. Journal of Food Engineering, 2001, 50(2): 99-105.
[8] CUCCURULLO G, GIORDANO L, METALLO A, et al. Influence of mode stirrer and air renewal on controlled microwave drying of sliced zucchini[J]. Biosystems Engineering, 2017, 158(4): 95-101.
[9] PU Y Y, SUN D W. Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution[J]. Biosystems Engineering, 2017, 156(4): 108-119.
[10] VARITH J, DIJKANARUKKUL P, ACHARIYAVIRIYA A, et al. Combined microwave-hot air drying of peeled longan[J]. Journal of Food Engineering, 2007, 81(2): 459-468.
[11] TORRINGA E, ESVELD E, SCHEEWE I, et al. Osmotic dehydration as a pre-treatment before combined microwave-hot-air drying of mushrooms[J]. Journal of Food Engineering, 2001, 49(2/3): 185-191.
[12] REN G, FENG C. Drying of American ginseng (Panax quinquefolium) roots by microwave-hot air combination[J]. Journal of Food Engineering, 1998, 35(4): 433-443.
[13] GOWEN A, ABU-GHANNAM N, FRIAS J, et al. Optimisation of dehydration and rehydration properties of cooked chickpeas (Cicer arietinum L.) undergoing microwave-hot air combination drying[J]. Trends in Food Science and Technology, 2006, 17(4): 177-183.
[14] KASSEM A S, SHOKR A Z, EL-MAHDY A R, et al. Comparison of drying characteristics of Thompson seedless grapes using combined microwave oven and hot air drying[J]. Journal of the Saudi Society of Agricultural Sciences, 2011, 10(1): 33-40.
[15] TALENS C, ARBOLEYA J C, CASTRO-GIRALDEZ M, et al. Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel[J]. LWT-Food Science and Technology, 2017, 77(4): 110-118.
[16] LE T Q, JITTANIT W. Optimization of operating process parameters for instant brown rice production with microwave-followed by convective hot air drying[J]. Journal of Stored Products Research, 2015, 61(3): 1-8.
[17] 王静,胡秋辉,辛志宏. 真空微波与热风联合干燥蒜片的工艺研究[J]. 食品工业科技, 2011, 32(8): 280-283,286.
[18] 国家卫生和计划生育委员会. GB 5009.3—2016 食品中水分的测定[S]. 北京:中国标准出版社, 2016.
[19] ASHTIANI S H M, SALARIKIA A, GOLZARIAN M R. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments[J]. Information Processing in Agriculture, 2017, 4(2): 128-139.
[20] HAN J, LAWSON L, HAN G, et al. A spectrophotometric method for quantitative determination of allicin and total garlic thiosulfinates[J]. Analytical Biochemistry, 1995, 225(1): 157-160.
[21] 熊伟. 大蒜素的提取工艺研究[D]. 南昌:南昌大学, 2006, 16-23.
文章导航

/