研究报告

蛹虫草虫草多糖的分离纯化、分子构象分析及抗氧化活性研究

  • 江琦 ,
  • 娄在祥 ,
  • 王正齐 ,
  • 王洪新 ,
  • 陈孝云
展开
  • 1(江南大学 食品学院,江苏 无锡,214122)
    2(国家功能食品工程技术研究中心(江南大学),江苏 无锡,214122)
    3(江南大学 生物工程学院,江苏 无锡,214122)
硕士(娄在祥副教授和王洪新教授为共同通讯作者,E-mail:louzaixiang@126.com,hxwang@jiangnan.edu.cn)

网络出版日期: 2019-02-01

Isolation and purification, structure and molecular conformation and antioxidant activities of polysaccharides from Cordyceps militaris

  • JIANG Qi ,
  • LOU Zaixiang ,
  • WANG Zhengqi ,
  • WANG Hongxin ,
  • CHEN Xiaoyun
Expand
  • 1(School of Food Science and Technology, Jiangnan University,Wixi 214122, China)
    2(National Engineering Research Center for Functional Food(Jiangnan University), Wixi 214122, China)
    3(School of Biology Engineering, Jiangnan University, Wuxi 214122, China)

Online published: 2019-02-01

摘要

选用蛹虫草粗多糖进行分离纯化,借助二乙氨基乙基纤维素52(DEAE-52)柱层析得到虫草中性多糖(Cordyceps militaris polysaccharide, CMP)。采用紫外可见光谱(UV-visible)和傅里叶变换红外光谱(fourier transform infrared spectroscopy, FT-IR)表征CMP,同时选用气质联用技术(GC-MS)测定单糖组成,并采用多角度激光光散射凝胶渗透色谱和示差联用(gel permeation chromatographymulti-angle laser light scattering-reflective index, GPC-MALLS-RI)测定CMP重均分子质量(MW)和均方根旋转半径(Rg),同时分析CMP在溶液中的构象。此外,对粗多糖和CMP的抗氧化活性进行比较。结果表明:经DEAE-52水洗的中性多糖CMP质量分数为76.63%,比粗多糖(44.95%)纯度提高70.48%;在260 nm和280 nm处均无明显紫外吸收;FT-IR说明CMP为α-构型多糖;其单糖组成为甘露糖、葡萄糖和半乳糖,摩尔比为1∶3.90∶1.51;MWRg分别为2.432×107 g/mol,31 nm;CMP在溶液状态下为高枝化度结构。1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)和2,2′-联氨-双-(3-乙基-苯并噻唑啉-6-磺酸)二铵盐(2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid),ABTS)自由基清除实验表明,CMP具有明显的抗氧化活性,且自由基清除率高于粗多糖。

本文引用格式

江琦 , 娄在祥 , 王正齐 , 王洪新 , 陈孝云 . 蛹虫草虫草多糖的分离纯化、分子构象分析及抗氧化活性研究[J]. 食品与发酵工业, 2019 , 45(1) : 22 -28 . DOI: 10.13995/j.cnki.11-1802/ts.017000

Abstract

A neutral Cordyceps militaris polysaccharide (CMP) from crude Cordyceps militaris polysaccharides was purified by using dicthylaminoethyl 52(DEAE-52)column chromatography. The CMP was characterized by ultraviolet-visible (UV-visible) and fourier transforming infrared spectroscopy (FT-IR). Gas chromatography-mass spectrometry (GC-MS) was applied to analyze the composition of monosaccharides. The weight-average molecular weight (MW) and the radii of gyration (Rg) of CMP were measured by multi-angle laser light scattering (MALLS), gel permeation chromatography (GPC) combined with reflective index detector (GPC-MALLS-RI). The chain conformation of CMP in solution was clarified at the same time. Additionally, the antioxidant activities of crude polysaccharides and CMP were compared. The results showed that CMP purified by DEAE-52 column had higher purity (mass fraction=76.63%), which was approximately 70.48% higher than that of crude polysaccharides (44.95%); The UV-visible spectrum showed that CMP had no significant absorption peaks at 260 nm and 280 nm. FT-IR revealed that CMP was an α-type polysaccharide. The monosaccharide compositions of CMP were mannose, glucose and galactose, with a molar ratio 1∶3.90∶1.51. The MW and Rg of CMP were 2.432×107 g/mol and 31 nm, respectively. Moreover, CMP exhibited a highly branched structure in solution. Furthermore, CMP had stronger DPPH and ABTS radical scavenging capacities than crude polysaccharides, which indicated that CMP possessed significant antioxidant activities.

参考文献

[1] DAS S K, MASUDA M, SAKURAI A, et al. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects [J]. Fitoterapia, 2010, 81(8): 961-968.
[2] CUNNINGHA K. Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) link. Part I. Isolation and characterization [J]. Journal of the Chemical Society, 1951, 2: 2 299-2 300.
[3] ZHU Zhenyuan, GUO Mingzhu, LIU FEI, et al. Preparation and inhibition on alpha-d-glucosidase of low molecular weight polysaccharide from Cordyceps militaris [J]. International Journal of Biological Macromolecules, 2016, 93: 27-33.
[4] ZHU SHUANG-JIE, PAN JIAN, ZHAO BIN, et al. Comparisons on enhancing the immunity of fresh and dry Cordyceps militaris in vivo and in vitro [J]. Journal of Ethnopharmacology, 2013, 149(3): 713-719.
[5] PARK B T, NA K W, JUNG E C, et al. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris [J]. The Korean Journal of Physiology & Pharmacology, 2009, 13(1): 49-54.
[6] CHEN XIAO-LI, WU GUANG-HONG, HUA ZHUO-LIE. Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris [J]. International Journal of Biological Macromolecules, 2013, 58(7): 18-22.
[7] LUO Xiao-ping, DUAN Yu-qing, YANG Wen-ya, et al. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militarys [J]. Carbohydrate Polymers, 2017, 157: 794-802.
[8] METHACANON P, MADLA S, KIRTIKARA K, et al. Structural elucidation of bioactive fungi-derived polymers [J]. Carbohydrate Polymers, 2005, 60(2): 199-203.
[9] NY/T 1676—2008, 食用菌中粗多糖含量的测定[S]. 北京:中国农业标准出版社, 2008.
[10] BLOIS M S. Antioxidant determination by use of stable free radicals [J]. Nature, 1958, 29(4617): 1 199-1 200.
[11] WANG Junhui, XU Jinlong, ZHANG Jingcheng, et al. Physicochemical properties and antioxidant activities of polysaccharide from floral mushroom cultivated in Huangshan Mountain [J]. Carbohydrate Polymers, 2015, 131: 240-247.
[12] WANG Rufeng, CHEN Ping, JIA Fang, et al. Optimization of polysaccharides from Panax japonicus C.A. Meyer by RSM and its anti-oxidant activity [J]. International Journal of Biological Macromolecules, 2012, 50(2): 331-336.
[13] YAN Jingkun, LI Lin, WANG Zhaomei, et al. Structural elucidation of an exopolysaccharide from mycelial fermentation of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis [J]. Carbohydrate Polymers, 2010, 79(1): 125-130.
[14] ZIMM B H. The scattering of light and the radial distribution function of high polymer solutions [J]. Journal of Chemical Physics, 1948, 16(12): 1 093-1 099.
[15] WYATT P J. Light scattering and the absolute characterization of macromolecules [J]. Analytica Chimica Acta, 1993, 272(1): 1-40.
[16] 陈同强, ADILEKOV J,王娟,等. 凝胶渗透色谱-多角度激光散射联用技术研究红芪多糖中4个组分分子特征[J]. 中国中药杂志, 2012, 37(12): 1 798-1 803.
[17] KATO T, OKAMOTO T, TOKUYA T, et al. Solution properties and chain flexibility of pullulan in aqueous solution [J]. Biopolymers, 2010, 21(8): 1 623-1 633.
文章导航

/