[1] FAOSTAT. Food and Agriculture Organization of the United Nations[EB/OL]. 2018.http://www.fao.org/faostat/en/#data.<br />
[2] RAHMATI S, JULKAPLI N M, YEHYE W A, et al. Identification of meat origin in food products-A review[J]. Food Control, 2016, 68: 379-390.<br />
[3] HRBEK V, VACLAVIK L, ELICH O, et al. Authentication of milk and milk-based foods by direct analysis in real time ionization-high resolution mass spectrometry (DART-HRMS) technique: A critical assessment[J]. Food Control, 2014, 36(1): 138-145.<br />
[4] ZHAO M, DOWNEY G, O’DONNELL C P. Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers[J]. Journal of Agricultural and Food Chemistry, 2015, 63(5): 1 433-1 441.<br />
[5] BANSAL S, SINGH A, MANGAL M, et al. Food adulteration: sources, health risks, and detection methods[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(6): 1 174-1 189.<br />
[6] SHI Y, FENG Y, XU C, et al. Loop-mediated isothermal amplification assays for the rapid identification of duck-derived ingredients in adulterated meat[J]. Food Analytical Methods, 2017, 10(7): 2 325-2 331.<br />
[7] ROHMAN A, ERWANTO Y, MAN Y B C. Analysis of pork adulteration in beef meatball using fourier transform infrared (FTIR) spectroscopy[J]. Meat Science, 2011, 88(1): 91-95.<br />
[8] RAHMAN M M, ALI M E, HAMID S B A, et al. Polymerase chain reaction assay targeting cytochrome b gene for the detection of dog meat adulteration in meatball formulation[J]. Meat Science, 2014, 97(4): 404-409.<br />
[9] KAPPEL K, SCHR DER U. Substitution of high-priced fish with low-priced species: adulteration of common sole in German restaurants[J]. Food Control, 2016, 59: 478-486.<br />
[10] FANG X, ZHANG C. Detection of adulterated murine components in meat products by TaqMan real-time PCR[J]. Food Chemistry, 2016, 192: 485-490.<br />
[11] BALLIN N Z. Authentication of meat and meat products[J]. Meat Science, 2010, 86(3): 577-587.<br />
[12] TANG M, WANG X, XU Y, et al. Water-injected detecting method research based on relative value of water content of beef[C]//2016 ASABE Annual International Meeting. America: American Society of Agricultural and Biological Engineers, 2016: 1.<br />
[13] LEITNER A, CASTRO-RUBIO F, MARINA M L, et al. Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid chromatography-tandem mass spectrometry[J]. Journal of Proteome Research, 2006, 5(9): 2 424-2 430.<br />
[14] PERISIC N, AFSETH N K, OFSTAD R, et al. Monitoring protein structural changes and hydration in bovine meat tissue due to salt substitutes by fourier transform infrared (FTIR) microspectroscopy[J]. Journal of Agricultural and Food Chemistry, 2011, 59(18): 10 052-10 061.<br />
[15] PERISIC N, AFSETH N K, OFSTAD R, et al. Characterizing salt substitution in beef meat processing by vibrational spectroscopy and sensory analysis[J]. Meat Science, 2013, 95(3): 576-585.<br />
[16] BOYACI I H, TEMIZ H T, UYSAL R S, et al. A novel method for discrimination of beef and horsemeat using raman spectroscopy[J]. Food Chemistry, 2014, 148: 37-41.<br />
[17] PEIRIS K, POSUDIN Y, KAYS S. Non-destructive detection of food adulteration to guarantee human health and safety[J]. Ukrainian Food Journal, 2015,4:207-260.<br />
[18] KUMAR Y, KARNE S C. Spectral analysis: a rapid tool for species detection in meat products[J]. Trends in Food Science & Technology, 2017, 62: 59-67.<br />
[19] LOHUMI S, LEE S, LEE H, et al. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration[J]. Trends in Food Science & Technology, 2015, 46(1): 85-98.<br />
[20] 黄伟,杨秀娟,张燕鸣,等. 近红外光谱技术在肉类定性鉴别中的研究进展[J]. 肉类研究, 2014, 28(1): 31-34.<br />
[21] ALAMPRESE C, AMIGO J M, CASIRAGHI E, et al. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics[J]. Meat Science, 2016, 121: 175-181.<br />
[22] MORSY N, SUN D W. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef[J]. Meat Science, 2013, 93(2): 292-302.<br />
[23] BELLON-MAUREL V, MCBRATNEY A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils-critical review and research perspectives[J]. Soil Biology and Biochemistry, 2011, 43(7): 1 398-1 410.<br />
[24] RAHMANIA H, ROHMAN A. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation[J]. Meat Science, 2015, 100: 301-305.<br />
[25] NUNES K M, ANDRADE M V O, SANTOS FILHO A M P, et al. Detection and characterisation of frauds in bovine meat in natura by non-meat ingredient additions using data fusion of chemical parameters and ATR-FTIR spectroscopy[J]. Food Chemistry, 2016, 205: 14-22.<br />
[26] MEZA-M RQUEZ O G, GALLARDO-VEL ZQUEZ T, OSORIO-REVILLA G. Application of mid-infrared spectroscopy with multivariate analysis and soft independent modeling of class analogies (SIMCA) for the detection of adulterants in minced beef[J]. Meat Science, 2010, 86(2): 511-519.<br />
[27] YANG D, YING Y. Applications of Raman spectroscopy in agricultural products and food analysis: A review[J]. Applied Spectroscopy Reviews, 2011, 46(7): 539-560.<br />
[28] ZBALCI B, BOYACI I· H, TOPCU A, et al. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks[J]. Food Chemistry, 2013, 136(3-4): 1 444-1 452.<br />
[29] DE BIASIO M, STAMPFER P, LEITNER R, et al. Micro-Raman spectroscopy for meat type detection[C]//Next-Generation Spectroscopic Technologies VIII. America:International Society for Optics and Photonics, 2015.<br />
[30] SOWOIDNICH K, KRONFELDT H D. Shifted excitation Raman difference spectroscopy at multiple wavelengths for in-situ meat species differentiation[J]. Applied Physics B, 2012, 108(4): 975-982.<br />
[31] ZAJAC A, HANUZA J, DYMIN′SKA L. Raman spectroscopy in determination of horse meat content in the mixture with other meats[J]. Food Chemistry, 2014, 156: 333-338.<br />
[32] TAO F, PENG Y, LI Y, et al. Simultaneous determination of tenderness and <i>Escherichia coli</i> contamination of pork using hyperspectral scattering technique[J]. Meat Science, 2012, 90(3): 851-857.<br />
[33] WU D, SHI H, HE Y, et al. Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn[J]. Journal of Food Engineering, 2013, 119(3): 680-686.<br />
[34] 刘友华,白亚斌,邱祝福. 等. 基于高光谱图像技术和波长选择方法的羊肉掺假检测方法研究[J]. 海南师范大学学报(自然科学版), 2015, 28(3):265-269.<br />
[35] KAMRUZZAMAN M, MAKINO Y, OSHITA S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning[J]. Journal of Food Engineering, 2016, 170: 8-15.<br />
[36] QIN J, CHAO K, KIM M S, et al. Hyperspectral and multispectral imaging for evaluating food safety and quality[J]. Journal of Food Engineering, 2013, 118(2): 157-171.<br />
[37] ROPODI A I, PAVLIDIS D E, MOHAREB F, et al. Multispectral image analysis approach to detect adulteration of beef and pork in raw meats[J]. Food Research International, 2015, 67: 12-18.<br />
[38] ROPODI A I, PANAGOU E Z, NYCHAS G J E. Multispectral imaging (MSI): A promising method for the detection of minced beef adulteration with horsemeat[J]. Food Control, 2017, 73: 57-63.<br />
[39] ROPODI A I, PANAGOU E Z, NYCHAS G J E. Rapid detection of frozen-then-thawed minced beef using multispectral imaging and Fourier transform infrared spectroscopy[J]. Meat Science, 2018, 135: 142-147.<br />
[40] LAGHI L, PICONE G, CAPOZZI F. Nuclear magnetic resonance for foodomics beyond food analysis[J]. TrAC Trends in Analytical Chemistry, 2014, 59: 93-102.<br />
[41] MARCONE M F, WANG S, ALBABISH W, et al. Diverse food-based applications of nuclear magnetic resonance (NMR) technology[J]. Food Research International, 2013, 51(2): 729-747.<br />
[42] PEARCE K L, ROSENVOLD K, ANDERSEN H J, et al. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review[J]. Meat Science, 2011, 89(2): 111-124.<br />
[43] 王胜威. 基于低场核磁共振及电子舌对羊肉品质安全判别研究[D]. 贵阳:贵州大学, 2015.<br />
[44] 王欣,王志永,陈利华, 等. 注水肉糜的低场核磁弛豫特性及判别分析[J]. 现代食品科技, 2016 (5): 79-84.<br />
[45] LI M, LI B, ZHANG W. Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI[J]. Food Chemistry, 2018, 242: 16-21.<br />
[46] HONG X, WANG J, HAI Z. Discrimination and prediction of multiple beef freshness indexes based on electronic nose[J]. Sensors and Actuators B: Chemical, 2012, 161(1): 381-389.<br />
[47] TIAN X, WANG J, CUI S. Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors[J]. Journal of Food Engineering, 2013, 119(4): 744-749.<br />
[48] NURJULIANA M, MAN Y B C, HASHIM D M, et al. Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer[J]. Meat Science, 2011, 88(4): 638-644.<br />
[49] 韩方凯. 基于电子舌技术的鱼新鲜度无损检测方法研究[D]. 镇江:江苏大学, 2013.<br />
[50] 田晓静,王俊,崔绍庆. 羊肉纯度电子舌快速检测方法[J]. 农业工程学报, 2013, 29(20):255-262.