通过对24株乳酸菌(Lactobacillus)羟自由基清除能力、DPPH自由基清除能力以及还原能力的测定,比较其体外抗氧化能力的大小,而后将乳酸菌喂食秀丽隐杆线虫(Caenorhabditis elegans),并用质量分数为0.003%的过氧化氢对线虫进行刺激,比较喂食不同乳酸菌的线虫寿命,分析乳酸菌在线虫体内缓解氧化损伤的能力。结果显示,植物乳杆菌(L. plantarum)Lp11不仅具有较高的体外抗氧化能力,还能有效缓解线虫体内因过氧化氢刺激引起的氧化应激,且缓解效果最好。体外抗氧化指标与线虫LT50值的相关性分析结果显示羟自由基清除能力这一体外抗氧化指标与缓解线虫氧化应激的效果具有较强相关性(P<0.01),能较好反映乳酸菌在线虫体内的抗氧化效果。
倪彩新
,
金星
,
周炜
,
陈晓华
,
印伯星
,
房东升
,
王刚
,
赵建新
,
张灏
,
陈卫
. 利用线虫模型评价乳酸菌体内抗氧化能力及其与体外抗氧化参数的对比[J]. 食品与发酵工业, 2019
, 45(3)
: 21
-27
.
DOI: 10.13995/j.cnki.11-1802/ts.018228
The scavenging effects of twenty-four strains of Lactobacillus on hydroxyl radicals, DPPH free radicals, and their reducing activities were investigated to compare their antioxidative activities in vitro. Then, Caenorhabditis elegans fed with these twenty-four Lactobacillus strains were put into a 0.003%(mass froution) hydrogen peroxide solution that induced oxidative stress. By comparing the lifespan of C. elegans fed with different Lactobacillus strains, abilities of Lactobacilli to mitigate oxidative damages in C. elegans were analyzed. The results showed that L. plantarum Lp11 not only exhibited high antioxidant capacity in vitro, but also effectively alleviated the oxidative stress in C. elegans with the best effect. The correlation analysis between antioxidant indexes in vitro and LT50 of C. elegans showed that hydroxyl radical scavenging capacity had a strong correlation with oxidative stress alleviation in C. elegans (P<0.01). Therefore, hydroxyl radical scavenging capacity of Lactobacilli can be used to reflect the antioxidant activity of Lactobacilli in C. elegans.
[1] MISHRA V, SHAH C, MOKASHE N, et al. Probiotics as potential antioxidants: a systematic review[J]. J Agric Food Chem, 2015, 63(14): 3 615-3 626.
[2] 王刚,田丰伟,刘小鸣,等. 2株具有优良体外抗氧化能力乳酸菌的筛选与鉴定[J]. 食品工业科技, 2013,34(15): 149-153+157.
[3] Lin M Y, Chang F J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356[J]. Digestive Diseases and Sciences, 2000, 45(8): 1 617-1 622.
[4] 张书文,吕加平,孟和毕力格,等. 两株乳酸杆菌sy13和ljj对活性氧的耐受性[J]. 微生物学报, 2009,39(2): 257-261.
[5] LI S, ZHAO Y, ZHANG L, et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods[J]. Food Chemistry, 2012, 135(3): 1 914-1 919.
[6] 蒋雨鹤,康大成,周光宏,等. 两株发酵乳杆菌体外抗氧化活性研究[J]. 南京农业大学学报, 2017(5): 915-920.
[7] 邢家溧,王刚,印伯星,等. 以细胞模型评价乳酸菌无细胞提取物的抗氧化活性[J]. 中国食品学报, 2017,18(7): 208-213.
[8] 张楠,李煜,高婷,等. 以秀丽隐杆线虫作为人类疾病模型的研究进展[J]. 中国食品卫生杂志, 2014(4): 398-403.
[9] IKEDA T, YASUI C, HOSHINO K, et al. Influence of lactic acid bacteria on longevity of Caenorhabditis elegans and host defense against Salmonella enterica serovar enteritidis[J]. Appl Environ Microbiol, 2007, 73(20): 6 404-6 409.
[10] KAMALADEVI A, GANGULI A, KUMAR M, et al. Lactobacillus casei protects malathion induced oxidative stress and macromolecular changes in Caenorhabditis elegans[J]. Pesticide Biochemistry and Physiology, 2013, 105(3): 213-223.
[11] GROMPONE G, MARTORELL P, LLOPIS S, et al. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans[J]. PLoS One, 2012, 7(12): e52 493.
[12] 余鹏辉. 红茶及茶黄素改善氧化应激效应研究[D]. 长沙:湖南农业大学, 2015.
[13] RODRÍGUEZ-CHÁVEZ J L, GÓMEZ-VIDALES V, COBALLASE-URRUTIA E, et al. Heterotheca inuloides (Mexican arnica) metabolites protect Caenorhabditis elegans from oxidative damage and inhibit nitric oxide production[J]. RSC Advances, 2016, 6(15): 12 032-12 041.
[14] ZHANG L, JIE G, ZHANG J, et al. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress[J]. Free Radical Biology & Medicine, 2009, 46(3): 414-421.
[15] PHULARA S C, SHUKLA V, TIWARI S, et al. Bacopa monnieri promotes longevity in Caenorhabditis elegans under stress conditions[J]. Pharmacognosy Magazine, 2015, 11(42): 410-416.
[16] MARTORELL P, BATALLER E, LLOPIS S, et al. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and beta-amyloid peptide toxicity[J]. PLoS One, 2013, 8(5): e63 283.
[17] 张书文. 抗氧化乳酸菌的筛选及其特性研究[D]. 内蒙古:内蒙古农业大学, 2009.
[18] LIN M Y, YEN C L. Antioxidative ability of lactic acid bacteria[J]. American Chemical Society, 1999, 47: 1 460-1 466.
[19] 王英. 抗氧化益生乳酸菌的筛选、抗氧化作用机制及应用研究[D]. 南京:南京师范大学, 2016.
[20] 陈明,柯文灿,保安安,等. 青藏高原牦牛酸奶中具高抗氧化能力乳酸菌的筛选[J]. 食品工业科技, 2016,37(8): 201-205.
[21] 王曦,罗霞,许晓燕,等. 不同乳酸菌菌株抗氧化能力的比较研究[J]. 食品科学, 2010, 31(9): 197-201.
[22] 李默,朱畅,赵冬兵,等. 发酵肉制品中高抗氧化肉品发酵剂的筛选鉴定[J]. 食品科学, 2017,38(12): 83-88.
[23] 李萌. Viili中乳酸菌的分离及对线虫寿命的影响[D]. 天津:天津科技大学, 2010.
[24] NAKAGAWA H, SHIOZAKI T, KOBATAKE E, et al. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans [J]. Aging Cell, 2016, 15: 227-236.
[25] LARSEN P L. Aging and resistance to oxidative damage in Caenorhabditis elegans[J]. Proceedings of the National Academy of Sciences, 1993, 90(19): 8 905-8 909.