研究报告

L-2-氨基丁酸大肠杆菌生产菌株的构建

  • 王婷 ,
  • 韩超 ,
  • 毛倩 ,
  • 张德志 ,
  • 蔡柠匀 ,
  • 刘宏亮 ,
  • 李燕军 ,
  • 陈宁
展开
  • 1(天津科技大学 生物工程学院,天津,300457)
    2(代谢控制发酵技术国家地方联合工程实验室(天津科技大学),天津,300457)
    3(教育部工业发酵微生物重点实验室(天津科技大学),天津,300457)
博士研究生(陈宁教授为通讯作者,E-mail: ningch@tust.edu.cn)。

收稿日期: 2018-08-28

  网络出版日期: 2019-03-11

Construction of Escherichia coli strain producing L-2-aminobutyrate

  • WANG Ting ,
  • HAN Chao ,
  • MAO Qian ,
  • ZHANG Dezhi ,
  • CAI Ningyun ,
  • LIU Hongliang ,
  • LI Yanjun ,
  • CHEN Ning
Expand
  • 1 (College of Biotechnology, Tianjin University of Science and Technology(Tianjin University of Science and Technology), Tianjin 300457, China)
    2 (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China)
    3 (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education(Tianjin University of Science and Technology), Tianjin 300457, China)

Received date: 2018-08-28

  Online published: 2019-03-11

摘要

L-2-氨基丁酸作为新型药物的关键手性前体,在化工和制药行业应用广泛。该文以1株生产L-苏氨酸的大肠杆菌(Escherichia coli)THRD为出发菌株,逐步延伸代谢途径,构建了L-2-氨基丁酸高产菌株。首先,分别把苏氨酸脱水酶编码基因ilvA2ilvA4在THRD中过表达,菌株THRD/pTrc99a-ilvA2在5 L发酵罐中分批补料发酵,2-酮基丁酸积累量达到18 g/L。然后,分别与ilvA2串联表达酪氨酸转氨酶、谷氨酸脱氢酶和亮氨酸脱氢酶编码基因tyrBgdhbcdBS,将L-2-酮基丁酸转化为L-2-氨基丁酸,菌株THRD/pTrc99a-bcdBS-ilvA2L-2-氨基丁酸产量达到19 g/L。最后,研究了阻断L-苏氨酸输出途径对发酵的影响,菌株THRDΔrhtC/pTrc99a-bcdBS-ilvA2L-2-氨基丁酸产量提升至22 g/L。因此,通过代谢途径延伸可以有效地将L-苏氨酸生产菌株转变为L-2-氨基丁酸生产菌株。该研究为L-2-氨基丁酸高产菌株的构建奠定了基础,且对其他延伸代谢途径获得新产品的代谢工程研究提供了参考。

本文引用格式

王婷 , 韩超 , 毛倩 , 张德志 , 蔡柠匀 , 刘宏亮 , 李燕军 , 陈宁 . L-2-氨基丁酸大肠杆菌生产菌株的构建[J]. 食品与发酵工业, 2019 , 45(3) : 56 -63 . DOI: 10.13995/j.cnki.11-1802/ts.018611

Abstract

L-2-aminobutyrate is a critical chiral precursor of new drugs, which has been widely used in chemical and pharmaceutical industries. In this study, the metabolic pathway of L-threonine in Escherichia coli THRD was extended to obtain an L-2-aminobutyrate producing strain. The threonine dehydratase encoding genes ilvA2 and ilvA4 were firstly individually overexpressed in E. coli THRD. The resulting strain THRD/pTrc99a-ilvA2 produced 18 g/L L-2-ketobutyrate in a 5 L fermenter by fed-batch fermentation. Subsequently, encoding genes of tyrosine aminotransferase, glutamate dehydrogenase, and leucine dehydrogenase, tyrB, gdh, and bcdBS, respectively, were overexpressed together with ilvA2 to catalyze the conversion of L-2-ketobutyrate to L-2-aminobutyrate. The strain THRD/pTrc99a-bcdBS-ilvA2 produced 19 g/L L-2-aminobutyrate. The effects of disrupting L-threonine exporters on L-2-aminobutyrate fermentation were investigated, and the production of L-2-aminobutyrate in strain THRDΔrhtC/pTrc99a-bcdBS-ilvA2 increased to 22 g/L. Taken together, the results clearly indicated that the L-threonine producing strain could be effectively transformed into an L-2-aminobutyrate producer by extending its downstream metabolic pathway. This study lays a solid basis for constructing L-2-aminobutyrate high producing strains. This study can also be referred in other metabolic engineering studies to biosynthesize new products by pathway extension.

参考文献

[1] 焦庆才,刘均忠,陈争依,等.L-2-氨基丁酸酶法转化制备:中国,101538596[P].2009-09-23.
[2] AKHTERUZZAMAN S,KATO Y,KOUZUKI H,et al.Carrier-mediated hepatic uptake of peptidic endothelin antagonists in rats[J]. Journal of Pharmacology and Experimental Therapeutics,1999,290(3):1 107-1 115.
[3] HALE K J,CAI J,MANAVIAZAR S,et al.Synthetic studies on the azinothricin family of antibiotics. Part 4. Enantioselective synthesis of the northern half of antitumour antibiotics A83586C and citropeptin[J].Tetrahedron Letters,1995,36(38):6 965-6 968.
[4] 郭勇,王力.一种新的制备单一构型的2-氨基丁酸或其衍生物的方法:中国,CN1510025[P].2004-07-07.
[5] 李国龙.酶法转化制备L-2-氨基丁酸[D].武汉:湖北大学,2017.
[6] CHOI H S,LEE S Y,KIM T Y,et al.In silico identification of gene amplification targets for improvement of lycopene production[J].Applied and Environmental Microbiology,2010,76(10):3 097-3 105.
[7] SHEN C R,LIAO J C.Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways[J].Metabolic Engineering,2008,10(6):312-320.
[8] CHEN L,CHEN Z,ZHENG P,et al.Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli[J].Applied Microbiology and Biotechnology,2013,97(7):2 939-2 949.
[9] PARK J H,OH J E,LEE K H,et al.Rational design of Escherichia coli for L-isoleucine production[J].ACS Synthetic Biology,2012,1(11):532-540.
[10] ZHANG C L,QI J S,LI Y J,et al.Production of α-ketobutyrate using engineered Escherichia coli via temperature shift[J].Biotechnology and Bioengineering,2016,113(9):2 054-2 059.
[11] DANCHIN A,DONDON L,DANIEL J.Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12[J].Molecular and General Genetics,1984,193(3):473-478.
[12] LEE K H,JIN H P,KIM T Y,et al.Systems metabolic engineering of Escherichia coli for L-threonine production[J].Molecular Systems Biology,2007,3(1):http://msb.embopress.org/content/3/1/149.
[13] DIESVELD R,TIETZE N,FÜRST O,et al.Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production[J].Journal of Molecular Microbiology and Biotechnology,2009,16(3/4):198-207.
[14] 张雪,温廷益.Red重组系统用于大肠杆菌基因修饰研究进展[J].中国生物工程杂志,2008,28(12):89-93.
文章导航

/