利用蒸汽爆破技术对苦荞麸皮进行预处理,并结合体外模拟胃肠消化模型,研究了汽爆处理前、后的苦荞麸皮多酚在不同胃肠消化阶段的释放量,抗氧化及抗增殖活性。结果表明:汽爆处理前后的苦荞麸皮多酚释放量及氧自由基吸收能力均有提高;汽爆处理后苦荞麸皮胃、肠消化液的细胞抗氧化性增强,EC50值分别为(19.95±0.37)和(150.32±6.43) mg/mL;汽爆处理后苦荞麸皮胃消化液对HepG2细胞有抑制效果,EC50值为(9.37±1.20) mg/mL。说明蒸汽爆破处理的苦荞麸皮具有一定的抗氧化及抗增殖活性,可为科学评价苦荞麸皮的营养价值提供参考。
[1] KONISHI T, YASUI Y O. Original birthplace of cultivated common buckwheat inferred from genetic relationships among cultivated populations and natural populations of wild common buckwheat revealed by AFLP analysis[J]. Genes and Genetic Systems, 2005, 80(2):113-119.
[2] TSUJI OHNISHI O. Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tartaricum Gaerth) populations revealed by AFLP analyses[J]. Genes and Genetic Systems, 2001, 76(1):47-52.
[3] ADOM K K, LIU R H. Antioxidant activity of grains[J]. Journal of Agricultural and Food Chemistry, 2002, 50(21):6 182-6 187.
[4] LIU R H. Whole grain phytochemicals and health[J]. Journal of Cereal Science, 2007, 46(3): 207-219.
[5] CHEN Y, ZHANG R, LIU C, et al. Enhancing antioxidant activity and antiproliferation of wheat bran through steam flash explosion[J]. Journal of Food Science and Technology, 2016, 53(7): 3 028-3 034.
[6] GUO X D, WU C S, MA Y J, et al. Comparison of milling fractions of Tartary buckwheat for their phenolics and antioxidant properties[J]. Food Research International, 2012, 49(1): 53-59.
[7] BONAFACCIA G, MAROCCHINI M, KREFT I. Composition and technological properties of the flour and bran from common and Tartary buckwheat[J]. Food Chemistry, 2003, 80(1): 9-15.
[8] SINGH J, SUHAG M, DHAKA A. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: A review[J]. Carbohydrate Polymers, 2015, 117:624-631.
[9] FERREIRA L C, SOUZA T S, FDZPOLANCO F, et al. Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure[J]. Bioresource Technology, 2014, 152(1):393-398.
[10] CHEN G, CHEN H. Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion[J]. Food Chemistry, 2011, 126(4):1 934-1 938.
[11] GONG L, ZHANG Y, WANG J, et al. Change in health ingredients of whole Tibetan hull-less barley after steam explosion and simulated digestion in vitro[J]. Journal of Food Processing and Preservation, 2016, 40(2):239-248.
[12] SAURA-CALIXTO F, SERRANO J, GOÑI I. Intake and bioaccessibility of total polyphenols in a whole diet[J]. Food Chemistry, 2007, 101(2):492-501.
[13] SENSOY I. A review on the relationship between food structure, processing, and bioavailability[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(7):902-909.
[14] ANSON N M, BERG R V D, HAVENAAR R, et al. Bioavailability of ferulic acid is determined by its bioaccessibility[J]. Journal of Cereal Science, 2009, 49(2):296-300.
[15] WANG T, HE F, CHEN G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review[J]. Journal of Functional Foods, 2014, 7(1):101-111.
[16] BAUBLIS A J, LU C, CLYDESDALE F M, et al. Potential of wheat-based breakfast cereals as a source of dietary antioxidants[J]. Journal of the American College of Nutrition, 2000, 3:308S-311S.
[17] 赵旭. 体外模拟消化对小麦和大米抗氧化活性和抗细胞增殖作用影响的研究[D]. 广州:华南理工大学, 2013.
[18] WOLFE K L, KANG X, HE X, et al. Cellular antioxidant activity of common fruits[J]. Journal of Agricultural and Food Chemistry, 2008,56(18): 8 418-8 426.
[19] WOLFE K L, LIU R H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22):8 896-8 907.
[20] FELICE D L, SUN J, LIU R H. A modified methylene blue assay for accurate cell counting[J]. Journal of Functional Foods, 2009, 1(1):109-118.
[21] YOON H, LIU R H. Effect of selected phytochemicals and apple extracts on NF-kappaB activation in human breast cancer MCF-7 cells[J]. Journal of Agricultural and Food Chemistry, 2007, 55(8):3 167-3 173.
[22] HE M, ZENG J, ZHAI L, et al. Effect of in vitro, simulated gastrointestinal digestion on polyphenol and polysaccharide content and their biological activities among 22 fruit juices[J]. Food Research International, 2017, 102:156-162.
[23] ORTEGA N, MACIÀ A, ROMERO M P, et al. Matrix composition effect on the digestibility of carob flour phenols by an in-vitro, digestion model[J]. Food Chemistry, 2011, 124(1):65-71.
[24] 许芳溢,李五霞,吕曼曼,等. 苦荞芽粉馒头体外消化后抗氧化能力研究[J]. 中国粮油学报, 2014, 29(12):16-22.
[25] GUMIENNA M, LASIK M, CZARNECKI Z. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitrodigestion[J]. International Journal of Food Sciences and Nutrition, 2011, 62(3):226-233.
[26] GAWLIK-DZIKI U, S′WIECA M, DZIKI D, et al. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin[J]. Food Chemistry, 2013, 138:1 621-1 628.
[27] 李小娟,聂钰洪,刘琦琦,等. 鲜食葡萄品种多酚类物质含量及抗氧化活性分析[J]. 北方园艺, 2017, 21:37-42.
[28] FALLER A L K, FIALHO E, LIU R H. Cellular antioxidant activity of Feijoada whole meal coupled with an in vitro digestion[J]. Journal of Agricultural and Food Chemistry, 2012, 60(19):4 826-4 832.
[29] BOAVENTURA B C B, SILVA E L D, PRUDENCIO E S, et al. Effect of in vitro digestion of yerba mate (Ilex paraguariensis A. St. Hil.) extract on the cellular antioxidant activity, antiproliferative activity and cytotoxicity toward HepG2 cells[J]. Food Research International, 2015, 77:257-263.
[30] FRONTELA-SASETA C, LÓPEZ-NICOLÀS R, GONZÀ-LEZ-BERMÚDEZ C A, et al. Evaluation of antioxidant activity and antiproliferative effect of fruit juices enriched with Pycnogenol? in colon carcinoma cells. The effect of in vitro gastrointestinal digestion[J]. Phytotherapy Research, 2011, 25(12):1 870-1 875.