[1] LV Man, LIU Yang, GENG Jinhui, et al. Engineering nanomaterials-based biosensors for food safety detection[J]. Biosensors and Bioelectronics, 2018, 106:122-128.
[2] MANGAL M, BANSAL S, SHARMA S K, et al. Molecular detection of foodborne pathogens: A rapid and accurate answer to food safety[J]. Critical Reviews in Food Science and Nutrition, 2016, 56(9):1 568-1 584.
[3] 徐李舟. 基于量子点的荧光生物与化学传感器及其食品安全快速检测应用[D]. 杭州:浙江大学, 2016.
[4] SCHWACK W, PELLISSIER E, MORLOCK G. Analysis of unauthorized Sudan dyes in food by high-performance thin-layer chromatography[J]. Analytical & Bioanalytical Chemistry, 2018,410(22):5 641-5 651.
[5] FARAJZADEH M A, AFSHAR MOGADDAM M R, REZAEE A S, et al. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection.[J]. Food Chemistry, 2016, 212:198-204.
[6] WU Ci, CHEN Xi, LIU Jianhui, et al. High-sensitive detection of multiple allergenic proteins in infant food with high-resolution mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(10):1 037-1 041.
[7] CHEN Jieping, ZHU Xiashi. Magnetic solid phase extraction using ionic liquid-coated core-shell magnetic nanoparticles followed by high-performance liquid chromatography for determination of Rhodamine B in food samples[J]. Food Chemistry, 2016, 200:10-15.
[8] YANG Xiao, DAI Juan, YANG Li, et al. Oxidation pretreatment by calcium hypochlorite to improve the sensitivity of enzyme inhibition‐based detection of organophosphorus pesticides[J]. Journal of the Science of Food & Agriculture, 2018, 98(7):2 624-2 631.
[9] HAYATI M, SUDJADI, ROHMAN A. Analysis of Salmonella enteritidis in chicken meat and egg by real time-polymerase chain reaction[J]. International Food Research Journal, 2017, 24(6):2 689-2 693.
[10] TIAN Wenhao, ZHANG Xiaoxiao, SONG Meirong, et al. An enzyme-linked immunosorbent assay to detect salinomycin residues based on immunomagnetic bead clean-up[J]. Food Analytical Methods, 2017, 10(9):3 042-3 051.
[11] SONG Yanchao, FENG Duan, SHAO Shuai, et al. Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation[J]. Talanta, 2018, 187:308-313.
[12] ASNAASHARI M, KENARI R E, FARAHMANDFAR R, et al. Fluorescence quenching biosensor for acrylamide detection in food products based on double-stranded DNA and gold nanoparticles[J]. Sensors & Actuators B Chemical, 2018, 265:339-345.
[13] FAN Taotao, DU Yan, YAO Yao, et al. Rolling circle amplification triggered poly adenine-gold nanoparticles production for label-free electrochemical detection of thrombin[J]. Sensors & Actuators B Chemical, 2018, 266:9-18.
[14] HASHEMI F, RASTEGARZADEH S, POURREZA N. A combination of dispersive liquid-liquid microextraction and surface plasmon resonance sensing of gold nanoparticles for the determination of ziram pesticide[J]. Journal of Separation Science, 2018, 41(5):1 156-1 163.
[15] JIAO Yang, ZHOU Lu, HE Haiyang, et al. A novel rhodamine B-based “off-on” fluorescent sensor for selective recognition of copper (Ⅱ) ions[J]. Talanta, 2018, 184:143-148.
[16] WAN Liping, QIN Yun, XIANG Juan. Rapid electrochemical fabrication of porous gold nanoparticles for high-performance electrocatalysis towards oxygen reduction[J]. Electrochimica Acta, 2017, 238:220-226.
[17] NI Xuan, XIA Bing, WANG Lumei, et al. Fluorescent aptasensor for 17 beta-estradiol determination based on gold nanoparticles quenching the fluorescence of Rhodamine B[J]. Analytical Biochemistry, 2017, 523:17-23.
[18] HUANG Chihching, CHANG Huan-tsung. Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution[J]. Analytical Chemistry, 2006, 78(24):8 332-8 338.
[19] CAI Huaihong, WANG Hui, WANG Jinhui, et al. Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET[J]. Dyes and Pigments, 2012, 92(1):778-782.
[20] WANG Chengke, TAN Rong, CHEN Dan. Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen doped carbon dots and silver nanoparticles[J]. Talanta, 2018, 182:363-370.
[21] XU Jingyue, LI Ying, WANG Luokai, et al. A facile aptamer-based sensing strategy for dopamine through the fluorescence resonance energy transfer between rhodamine B and gold nanoparticles[J]. Dyes and Pigments, 2015, 123:55-63.
[22] ZHAN Shenshan, XU Hanchu, ZHAN Xuejia, et al. Determination of silver(I) ion based on the aggregation of gold nanoparticles caused by silver-specific DNA, and its effect on the fluorescence of Rhodamine B[J]. Microchimica Acta, 2015, 182(7-8):1 411-1 419.
[23] 吕晶,徐鲁荣,杜高尚,等. 基于核酸适配体的纳米金淬灭罗丹明B荧光法检测氨苄青霉素[J]. 上海交通大学学报(农业科学版), 2017, 35(1):34-41.
[24] TIRA D S, FOCSAN M, ULINICI S, et al. Rhodamine B-coated gold nanoparticles as effective “Turn-on”fluorescent sensors for detection of zinc Ⅱ ions in water[J]. Spectroscopy Letters, 2014, 47(2):153-159.
[25] ZHENG Aifang, CHEN Jinlong, WU Ganning, et al.Optimization of a sensitive method for the “switch-on” determination of mercury(Ⅱ) in waters using Rhodamine B capped gold nanoparticles as a fluorescence sensor[J]. Microchimica Acta, 2009, 164(1-2):17-27.
[26] 裴智明,莫志宏,吕佳,等. 纳米金-染料传感器阵列对汞(Ⅱ)的模式识别[J]. 分析化学, 2013, 41(6):841-845.
[27] LIU Dingbin, CHEN Wenwen, WEI Jinhua, et al. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides[J]. Analytical Chemistry, 2012, 84(9):4 185-4 191.
[28] DONG Liang, HOU Changjun, FA Huanbao, et al. Highly sensitive fluorescent sensor for Cartap based on fluorescence resonance energy transfer between gold nanoparticles and rhodamine B[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(4): 2 441-2 449.
[29] CAO Xianyi, SHEN Fei, ZHANG Minwei, et al. Highly sensitive detection of melamine based on fluorescence resonance energy transfer between rhodamine B and gold nanoparticles[J]. Dyes and Pigments, 2014, 111:99-107.
[30] FILBRUN S L, DRISKELL J D. A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles[J]. Analyst, 2016, 141(12):3 851-3 857.
[31] AMJADI M, HASSANZADEH J, MANZOORI J L. Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles[J]. Microchimica Acta, 2014, 181(15-16):1 851-1 856.
[32] VAHID B, HASSANZADEH J, ABOLHASANI J, et al. Inhibition of rhodamine B-ferricyanide chemiluminescence by Au nanoparticles toward the sensitive determination of mercury (Ⅱ) ions[J]. Microchemical Journal, 2016, 126:326-331.
[33] 吴永祥. 用于细胞分析的新型荧光探针的设计、合成及传感性能研究[D]. 长沙:湖南大学, 2015.
[34] 朱颖,刘沛,羊小海,等. 基于T-Hg2+-T及G四聚体自身熄灭能力的“Turn on”型单标记DNA荧光探针用于碘离子的检测[J]. 高等学校化学学报, 2012, 33(12):2 651-2 656.
[35] 王青,刘卫,羊小海,等. 纳米金颗粒增强信号的电化学生物传感器用于谷胱甘肽和半胱氨酸的检测[J]. 高等学校化学学报, 2013, 34(8):1 845-1 850.
[36] 薛瑞,康天放,鲁理平. 层层自组装纳米金与乙酰胆碱酯酶电化学生物传感器检测有机磷农药[J]. 分析测试学报, 2012, 31(8):940-944.
[37] PENG D, HU B, KANG M, et al. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(Ⅱ)[J]. Applied Surface Science, 2016, 390:422-429.
[38] XIN Jiaying, DOU Boxin, WANG Zhenxing, et al. Direct electrochemistry of methanobactin functionalized gold nanoparticles on Au electrode[J]. Journal of Nanoscience & Nanotechnology, 2018, 18(7):4 805-4 813.
[39] 耿美,李忠海,黎继烈,等. 基于纳米金的电化学DNA生物传感器的研究进展[J]. 食品工业, 2013(7):117-120.
[40] YU Wenbo, ZHANG Tingting, MA Mingfang, et al. Highly sensitive visual detection of amantadine residues in poultry at the ppb level: A colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation[J]. Analytica Chimica Acta, 2018, 1 027:130-136.
[41] LI Chao, YANG Yucai, ZHANG Bin, et al. Conjugation of graphene oxide with DNA-modified gold nanoparticles to develop a novel colorimetric sensing platform[J]. Particle & Particle Systems Characterization, 2014, 31(2):201-208.
[42] SIMON T, SHELLAIAH M, STEFFI P, et al. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples[J]. Analytica Chimica Acta, 2018, 1 023:96-104.
[43] LUO Hairui, WANG Xiaohui, HUANG Yiqun, et al. Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice[J]. Journal of the Science of Food & Agriculture, 2018, 98(10):3 892-3 898.
[44] SONG Dandan, WANG Yuanzhe, LU Xiong, et al. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2, nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides[J]. Sensors & Actuators B Chemical, 2018, 267:5-13.
[45] RAJABI M, RAHIMI M, HEMMATI M, et al. Chemically functionalized silica nanoparticles‐based solid‐phase extraction for effective pre‐concentration of highly toxic metal ions from food and water samples[J]. Applied Organometallic Chemistry, 2018, 32(2):e4012.