研究报告

拟指数—DO-stat两阶段补料策略在糖蜜酵母高密度培养中的应用

  • 徐富增 ,
  • 王柯 ,
  • 李善元 ,
  • 毛忠贵 ,
  • 张建华
展开
  • 1(江南大学 生物工程学院,江苏 无锡,214122)
    2(工业生物技术教育部重点实验室江南大学,江苏 无锡,214122)
    3(云南保山九隆酵母有限公司,云南 保山,678000
硕士研究生(张建华副研究员为通讯作者,E-mail:jhzh882@163.com)。

收稿日期: 2018-11-15

  修回日期: 2019-01-04

  网络出版日期: 2019-05-14

Application of quasi-exponential-DO-Stat two-stage feeding strategy in high-cell-density cultivation of Saccharomyces cerevisiae

  • XU Fuzeng ,
  • WANG Ke ,
  • LI Shanyuan ,
  • MAO Zhonggui ,
  • ZHANG Jianhua
Expand
  • 1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    2(Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University, Wuxi 214122, China)
    3(Baoshan Jiulong Yeast Co., Ltd., Baoshan 678000, China)

Received date: 2018-11-15

  Revised date: 2019-01-04

  Online published: 2019-05-14

摘要

高密度培养(high cell density cultivation,HCDC)是酵母生产实现高效高产的途径。文中以菌体量、菌体得率和生产强度为评价指标,探讨了拟指数和DO-stat两种补料策略的优缺点,提出了1种两阶段补料策略:在21 h的分批培养结束后,首先采用比生长速率为0.03 h-1的拟指数补料,然后在溶氧跌到20%以下后将补料方式切换为DO 40%的DO-stat补料。结果显示,两阶段补料策略达到了菌体量123.57 g/L、总菌体得率0.51 g/g、生产强度1.15 g/(L·h)。与拟指数补料策略相比,菌体量提高了23.8%、菌体得率提高 6.25%;与DO-Stat补料策略相比,培养周期缩短20.4%、生产强度提高了14.5%。研究结果表明,两阶段补料策略可以有效地提高酵母生长能力。

本文引用格式

徐富增 , 王柯 , 李善元 , 毛忠贵 , 张建华 . 拟指数—DO-stat两阶段补料策略在糖蜜酵母高密度培养中的应用[J]. 食品与发酵工业, 2019 , 45(7) : 15 -21 . DOI: 10.13995/j.cnki.11-1802/ts.019332

Abstract

High cell density cultivation (HCDC) is a way to achieve efficient and high yeast production yield. Two feeding strategies, quasi-exponential and DO-Stat, were evaluated according to the dry cell weight, yield, and productivity. Based on the results, a two-step feeding strategy was developed, which started with quasi-exponential at specific growth rate of 0.03 h-1 after 21 h batch cultivation. The feeding strategy was then switched to DO-Stat with 40% DO when the dissolved oxygen fell to 20%. Implementation of the two-step feeding strategy resulted in 123.57 g/L dry cell weight, total yield of 0.51 g/g, and 1.15 g/(L·h) productivity. Compared with quasi-exponential feeding strategy, the dry cell weight and the yield of the two-step feeding strategy increased by 23.8% and 6.25%, respectively. Compared with DO-Stat feeding strategy, the production period shortened by 20.4% and the productivity increased by 14.5%. The results indicated that the two-step feeding strategy can effectively improve the growth capacity of yeast, which provides valuable reference and significant guidance for industrial production of yeast.

参考文献

[1] BCC Research.Yeasts,yeast extracts,autolysates and related products: the global market[R].BCC Research Report Code: CHM053B.Wellesley, MA,2017.
[2] ŠÓRKA E,BUBNIK Z,HINKOVA A,et al.Beet molasses-desugarization,composition,properties and application possibilities[J].Sugar Industry,2013,138(2):105-114.
[3] ALEKSANDRA M,MIROÑCZUK M,RAKICKA M,et al.A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol[J].Bioresource Technology, 2015,198:445-455.
[4] TORRADO R,GAMERO E,GÓMEZ R,et al.Yeast biomass,an optimised product with myriad applications in the food industry[J]. Trends in Food Science & Technology,2015,46(2):167-175.
[5] DEKEN D, H R.The Crabtree effect:a regulatory system in yeast[J].J Gen Microbiol,1966,44:149-156.
[6] GIBSON B R,LAWRENCE S J,LECLAIRE J P,et al.Yeast responses to stresses associated with industrial brewery handling[J]. Fems Microbiology Reviews,2010,31(5):535-569.
[7] ARNDT M,HITZMANN B.Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae[J].Biotechnology Progress,2010,20(1):377-383.
[8] 陈洪章,李佐虎.酵母菌的高密度发酵[J].工业微生物,1998,18(1):28-31.
[9] 齐士朋,徐尔尼,罗玉芬,等.细胞高密度培养技术的应用研究进展[J].食品与发酵工业,2011,37(2):139-143.
[10] 张许,丁健,高鹏,等.基于差分进化算法的酿酒酵母分批补料培养在线自适应控制[J].中国生物工程杂志,2016,36(1):68-75.
[11] CHOPDA V R, RATHORE A S, GOMES J.Maximizing biomass concentration in baker’s yeast process by using a decoupled geometric controller for substrate and dissolved oxygen[J].Bioresource Technology,2015,196:160-168.
[12] HOCALAR A, TüRKER M. Model based control of minimal overflow metabolite in technical scale fed-batch yeast fermentation[J]. Biochemical Engineering Journal,2010,51(1):64-71.
[13] MISZCZAK W, CIBIS E, KRZYWONOS M.A straight forward logistic method for feeding a fed-batch baker′s yeast culture[J].Bio-chemical Engineering Journal,2012,60:36-43.
[14] 于景芝.酵母生产与应用手册[M].北京:中国轻工业出版社,2005:79-82.
[15] 季萌,缪冶炼,陈介余,等.线性减小比生长速率指数补料策略对酵母生产效率的改善[J].食品与发酵工业,2016,42(9):34-39.
[16] 杨林娥,彭晓光,杨庆文,等.斐林试剂法测定还原糖方法的改进[J].中国酿造,2010,29(5):160-161.
[17] 王柯.酒精—沼气双发酵耦联生态系统的机理和关键技术研究[D].无锡:江南大学, 2014:25.
[18] 李寅,高海军,陈坚.高细胞密度发酵技术[M].北京:化学工业出版社,2006:231-232.
[19] HAGMAN A,SÁLL T,PIŠKUR J.Analysis of the yeast short-term Crabtree effect and its origin[J].FEBS Journal,2014,281(21):4 805-4 814.
[20] LI Xin, KANG Yuanjun,YU Can, et al.Exponential feeding strategy of high-density cultivation of a salt-tolerant aroma-producing yeast Zygosaccharomyces rouxii in stirred fermenter[J].Biochemical Engineering Journal, 2016,111:18-23.
[21] Yang F C,MAA D W.Fed-batch culture of yeast Saccharomyces cerevisiae, with a DO-stat method by a fuzzy controller[J].Bioprocess Engineering,1998,18(2):79-82.
[22] 窦冰然,郭会明,骆海燕,等.耐高糖面包酵母发酵工艺优化[J].食品工业科技,2016,37(18):208-212.
[23] 康国凯,冯国栋,曹坤琳,等.重组毕赤酵母(Pichia pastoris)高产Lunasin的发酵工艺优化[J].中国生物工程杂志,2016,36(8):73-79.
[24] FEI S,WEN S,XI W,et al.High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae[J].Journal of Bioscience & Bioengineering,2006,101(1):38-41.
[25] VU V H, KIM K.High-cell-density fed-batch culture of Saccharomyces cerevisiae KV-25 using molasses and corn steep liquor[J]. J Microbiol Biotechnol,2009,19(12):1 603-1 611.
[26] KIM Y H,KANG S W,LEE J H,et al.High cell density fermentation of Saccharomyces cerevisiae JUL3 in fed-batch culture for the production of β-Glucan[J].Journal of Industrial & Engineering Chemistry,2007,13(1):153-158.
[27] 康远军.高耐性鲁氏酵母高密度发酵研究[D].武汉:湖北工业大学,2015:37-51.
[28] GAO H,TAN T.Fed-batch fermentation for ergosterol production[J].Process Biochemistry,2004,39(3):345-350.
文章导航

/