研究报告

转化姜黄素加氢衍生物菌株的筛选鉴定及培养基优化

  • 吴传超 ,
  • 徐富成 ,
  • 顾秋亚 ,
  • 余晓斌
展开
  • 1(江南大学 生物工程学院,江苏 无锡, 214122)
    2(工业生物技术教育部重点实验室江南大学,江苏 无锡,214122)
硕士研究生(余晓斌教授为通讯作者,E-mail:xbyu@jiangnan.edu.cn)。

收稿日期: 2018-11-14

  修回日期: 2018-12-26

  网络出版日期: 2019-05-14

基金资助

国家轻工技术与工程一流学科自主课题资助(LITE2018-11)

Screening and identification of strains transforming curcumin hydrogenated derivatives and medium optimization

  • WU Chuanchao ,
  • XU Fucheng ,
  • GU Qiuya ,
  • YU Xiaobin
Expand
  • 1(School of Biotechnology, Jiangnan University, Wuxi 214122,China)
    2(The Key Laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University,Wuxi 214122,China)

Received date: 2018-11-14

  Revised date: 2018-12-26

  Online published: 2019-05-14

摘要

以姜黄素(curcumin,CUR)为唯一碳源的培养基中初筛出83株菌种,再利用高效液相色谱(high performance liquid chromatography,HPLC)复筛,得到5株可以以姜黄素为底物生产二氢姜黄素(dihydrocurcumin,DHC)与四氢姜黄素(tetrahydrocurcumin,THC)的菌株。以初始产率最高的菌种作为目的菌种,通过形态学特征与26S rDNA D1/D2区基因序列比对鉴定出该菌株为Cyberlindnera rhodanensis。对基础发酵培养基中碳源、氮源及无机盐进行单因素优化,得出结果为,产DHC的最佳碳源为40 g/L葡萄糖、氮源为30 g/L蛋白胨、无机盐为2 g/L K2HPO4,在此条件下产率由10.49%提高到20.20%;产THC的最优碳源、氮源和无机盐分别为20 g/L葡萄糖、20 g/L蛋白胨和3 g/L K2HPO4,优化后产率由13.67%提高到24.31%。首次筛选得到1株能以姜黄素为底物,通过微生物转化得到二氢姜黄素与四氢姜黄素的酵母菌,为姜黄素加氢衍生物的研究提供一定参考,并且提供新菌种资源。

本文引用格式

吴传超 , 徐富成 , 顾秋亚 , 余晓斌 . 转化姜黄素加氢衍生物菌株的筛选鉴定及培养基优化[J]. 食品与发酵工业, 2019 , 45(7) : 45 -51 . DOI: 10.13995/j.cnki.11-1802/ts.019321

Abstract

There were 83 strains screened out from the medium using curcumin (CUR) as the sole carbon source, and they were evaluated by high performance liquid chromatography (HPLC). There were five strains that were able to produce dihydrocurcumin (DHC) and tetrahydrocurcumin (THC) using curcumin as substrate. The strain with the highest initial yield was used as target and was identified as Cyberlindnera rhodanensis by morphological characteristics and 26S rDNA D1/D2 region gene sequence alignment. The results showed that the optimal amounts of carbon source, nitrogen source, and inorganic salts to produce DHC were 40 g/L glucose, 30 g/L peptone, and 2 g/L K2HPO4, respectively. Under this condition, the yield of DHC increased from 10.49% to 20.20%. The optimal amounts of carbon source, nitrogen source, and inorganic salts to produce THC were 20 g/L glucose, 20 g/L peptone, and 3 g/L K2HPO4, respectively. The optimized yield of THC increased by 24.31% from 13.67%. This study screened a yeast strain that can use CUR as a substrate to obtain DHC and THC by microbial transformation for the first time, together with providing new strain resources.

参考文献

[1] SHARMA R A,GESCHER A J,STEWARD W P.Curcumin: the story so far[J].European Journal of Cancer,2005,41(13):1 955-1 968.
[2] 吴燕华.深海真菌Aspergillus sp.SCSIOW2对白藜芦醇和姜黄素的生物转化研究[D].深圳:深圳大学, 2017.
[3] ANAND P,KUNNUMAKKARA A B,NEWMAN R A,et al.Bioavailability of curcumin: problems and promises[J].Molecular Pharmaceutics,2007,4(6):807-818.
[4] 李锐,刘芳,李芸香,等.微生物转化法制备双脱甲氧基姜黄素糖苷化产物及其对HepG2肿瘤细胞的抑制作用[J].食品与发酵工业,2016,42(6):20-25.
[5] KHARAT M,DU Z,ZHANG G,et al.Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment[J].Journal of Agricultural and Food Chemistry,2017,65(8):1 525-1 532.
[6] MASUDA T,HIDAKA K,SHINOHARA A,et al.Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin[J].Journal of Agricultural & Food Chemistry,1999,47(1):71-77.
[7] KUMAR V,LEWIS S A,MUTALIK S,et al.Biodegradable microspheres of curcumin for treatment of inflammation[J].Indian J Physiol Pharmacol,2002,46(2):209-217.
[8] TEITEN M H,GAASCHT F,EIFES S,et al.Chemopreventive potential of curcumin in prostate cancer[J].Genes & Nutrition,2010,5(1):61-74.
[9] JAGANNATHAN R,ABRAHAM P M,PODDAR P.Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability[J].Journal of Physical Chemistry B,2012,116(50):14 533-14 540.
[10] MODASIYA M K,PATEL V M.Studies on solubility of curcumin[J].International Journal of Pharmacy & Life Sciences,2012,3(3):1 490-1 497.
[11] LAO C D,RUFFIN M T,NORMOLLE D,et al.Dose escalation of a curcuminoid formulation[J].Bmc Complementary & Alternative Medicine,2006,6(1):1-4.
[12] SIVIERO A,GALLO E,MAGGINI V,et al.Curcumin, a golden spice with a low bioavailability[J].Journal of Herbal Medicine,2015,5(2):57-70.
[13] ZHANG Rongkai,QU Jianqiang.Progress in structure modification of curcumin[J].Chemical Industry & Engineering,2011,28(5):61-67.
[14] LIN J K,PAN M H,LIN-SHIAU S Y.Recent studies on the biofunctions and biotransformations of curcumin[J].Biofactors,2010,13(1-4):153-158.
[15] TAN S,RUPASINGHE T W T, TULL D L,et al.Degradation of curcuminoids by in vitro pure culture fermentation[J].Journal of Agricultural and Food Chemistry,2014,62(45):11 005-11 015.
[16] 舒琅.姜黄根茎内生真菌多样性及其对姜黄素的微生物转化[D].吉首:吉首大学, 2012.
[17] 关松磊,吴雅馨,孙赫,等.微生物转化技术在中药开发中的应用进展[J].微生物学通报,2018,45(4):900-906.
[18] QUAN L H,KIM Y J,LI G H,et al.Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius[J].World J Microbiol Biotechnol,2013,29(6):1 001-1 007.
[19] MAEHARA S,IKEDA M,HARAGUCHI H,et al.Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus Diaporthe sp. associated with Curcuma longa[J].Chemical & Pharmaceutical Bulletin,2011,59(8):1 042-1 044.
[20] ZHANG Weiyu,HUANG Jin,WO Xingde,et al.Microbial transformation of curcumin to its derivatives with a novel Pichia kudriavzevii ZJPH0802 strain[J].Appl Biochem Biotechnol,2013,170(5):1 026-1 037.
[21] 罗杨春.微生物转化法制备姜黄素衍生物的研究[D].杭州:浙江工业大学, 2014.
[22] 郑彬彬,张维宇,罗杨春,等.毕赤酵母生物转化制备四氢姜黄素的转化条件优化[J].生物加工过程,2017,15(2):30-34.
[23] 廖利,华桦,赵军宁.四氢姜黄素的研究进展[J].世界科学技术-中医药现代化,2014,16(12):2 708-2 712.
[24] ZHANG Xing,YE Min,LI Rui,et al.Microbial transformation of curcumin by Rhizopus chinensis[J].Biocatalysis,2015,28(5-6):380-386.
[25] 张维宇.姜黄素微生物转化产物的研究[D].杭州:浙江工业大学, 2013.
[26] 方磊,陈红,余晓斌.高转化人参皂苷菌株筛选鉴定及发酵培养基优化[J].食品与发酵工业,2017,43(4):147-151.
文章导航

/