研究报告

过量表达purC基因对Lactococcus lactis NZ9000酸胁迫抗性的影响

  • 杨佩珊 ,
  • 张娟 ,
  • 刘为佳 ,
  • 朱政明 ,
  • 堵国成
展开
  • 1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
    2(糖化学与生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
    3(江南大学 生物工程学院,江苏 无锡,214122)
硕士研究生(张娟副教授为通讯作者,E-mail:zhangj@jiangnan.edu.cn)。

收稿日期: 2018-11-28

  修回日期: 2019-01-06

  网络出版日期: 2019-05-14

基金资助

国家自然科学基金(31470160);江苏省产学研前瞻性联合研究项目(BY2016022-39)

Effects on acid-stress tolerance of Lactococcus lactis NZ9000 by overexpressing purC

  • YANG Peishan ,
  • ZHANG Juan ,
  • LIU Weijia ,
  • ZHU Zhengming ,
  • DU Guocheng
Expand
  • 1(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122,China)
    2(Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122,China)
    3(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2018-11-28

  Revised date: 2019-01-06

  Online published: 2019-05-14

摘要

通过在乳酸乳球菌Lactococcus lactis NZ9000中过量表达嘌呤代谢途径中编码磷酸核糖基氨基咪唑-琥珀酰胺合酶的purC基因,测定了重组菌株在酸胁迫条件下的存活率,经pH 4.0胁迫培养4 h后,重组菌株的存活率为对照菌株的83.2倍。采用ATP测定试剂盒和高效液相色谱分别考察菌株胞内ATP和氨基酸含量。结果表明,重组菌株在酸胁迫条件下维持了更高的胞内ATP和氨基酸(天冬氨酸、苏氨酸、谷氨酸和γ-氨基丁酸)含量,分别通过为细胞提供能量和消耗胞内质子的方式,帮助乳酸乳球菌抵御酸胁迫。研究发现,在乳酸乳球菌中过表达purC基因能够明显提高菌株的酸胁迫抗性,同时为进一步通过改造嘌呤代谢途径提高乳酸菌酸胁迫耐受性提供了新的思路。

本文引用格式

杨佩珊 , 张娟 , 刘为佳 , 朱政明 , 堵国成 . 过量表达purC基因对Lactococcus lactis NZ9000酸胁迫抗性的影响[J]. 食品与发酵工业, 2019 , 45(8) : 8 -14 . DOI: 10.13995/j.cnki.11-1802/ts.019478

Abstract

In this study, purC encodes the phosphoribosylaminoimidazole-succinocarboxamide synthase in the purine metabolic pathway was overexpressed in Lactococcus lactis NZ9000. After treating the recombinant strain with acidic stress (pH=4.0) for 4 h, its survival rate was 83.2 times higher than that of the control strain. The recombinant strain maintained higher intracellular contents of ATP and amino acids (aspartate, glutamate, threonine, and γ-aminobutyric acid) under acidic stress. Thereby, the acid tolerance of L. lactis was improved by providing energy to cells and consuming intracellular protons. This provides a new idea for further improving the acid-tolerant ability of lactic acid bacteria by altering purine metabolism.

参考文献

[1] BENBOUZIANE B, RIBELLES P, AUBRY C, et al. Development of a stress-inducible controlled expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces [J]. Journal of Biotechnology, 2013, 168(2): 120-129.
[2] BURGES C, O'CONNELL-MOTHERWAY M, SYBESMA W, et al. Riboflavin production in Lactococcus lactis: Potential for in situ production of vitamin-enriched foods [J]. Applied and Environmental Microbiology, 2004, 70(10): 5 769-5 777.
[3] ZHU Yan, ZHANG Yangping, LI Yin. Understanding the industrial application potential of lactic acid bacteria through genomics [J]. Applied Microbiology and Biotechnology, 2009, 83(4): 597-610.
[4] CARALHEIRO F, MONIZ P, DUARTE L C, et al. Mannitol production by lactic acid bacteria grown in supplemented carob syrup [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(1): 221-227.
[5] ZHANG Mingyang, ZHANG Juan, LIU Long, et al. Influence of key acid-resistant genes in arginine metabolism on stress tolerance in Lactococcus lactis NZ9000 [J]. Microbiology China, 2017, 44(2): 314-324.
[6] AZIZAN K A, RESSOM H W, MENDOZA E R, et al. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses [J]. Peerj, 2017, 5(7): 24.
[7] WEIDMANN S, MAITRE M, LAURENT J, et al. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance [J]. International Journal of Food Microbiology, 2017, 247: 18-23.
[8] JIN Junhua, QIN Qian, GUO Huiyuan, et al. Effect of pre-stressing on the acid-stress response in Bifidobacterium revealed using proteomic and physiological approaches [J]. Plos One, 2015, 10(2): 10-14.
[9] DE A M, DI C R, HUET C, et al. Heat shock response in lactobacillus plantarum [J]. Applied and Environmental Microbiology, 2004, 70(3): 1 336-1 346.
[10] ZHANG Juan, WU Chongde, DU Guocheng, et al. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress [J]. Biotechnology and Bioprocess Engineering, 2012, 17(2): 283-289.
[11] BAS T, ANNE W, LEO J, et al. Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation [J]. Plos Computational Biology, 2009, 5(6): e1000410.
[12] ZHANG Juan, FU Ruiyan, HUGENHOLTZ J, et al. Glutathione protects Lactococcus lactis against acid stress [J]. Applied and Environmental Microbiology, 2007, 73(16): 5 268-5 275.
[13] WU Chongde, ZHANG Juan, DU Guocheng, et al. Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress [J]. Bioresource Technology, 2013, 143(6): 238-241.
[14] ALMARZA O, NUNEZ D, TOLEDO H. The DNA-Binding protein HU has a regulatory role in the acid stress response mechanism in Helicobacter pylori [J]. Helicobacter, 2015, 20(1): 29-40.
[15] BOVE C G, ANGELIS M D, GATTI M, et al. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium [J]. Proteomics, 2012, 12(21): 3 206-3 218.
[16] WU Chongde, ZHANG Juan, CHEN Wei, et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance [J]. Applied Microbiology and Biotechnology, 2012, 93(2): 707-722.
[17] 张彦位, 张娟,堵国成,等. 天冬氨酸提高乳酸乳球菌Lactococcus lactis NZ9000酸胁迫抗性的作用机制[J]. 微生物学通报,2018,45(12): 2 563-2 515.
[18] 张梦汝, 张娟,堵国成,等. 外源添加亮氨酸提高乳酸乳球菌酸胁迫抗性[J]. 食品与生物技术学报, 2015, 34(2): 134-139.
[19] CHEN J, VESTERGAARD M, JENSEN T G, et al. Finding the needle in the gaystack-the use of microfluidic droplet technology to identify vitamin-secreting lactic acid bacteria [J]. Mbio, 2017, 8(3): 12.
[20] MA Xiaofeng, WANG Wenming, BITTNER F, et al. Dual and opposing roles of xanthine dehydrogenase in defense-associated reactive oxygen species metabolism in arabidopsis [J]. Plant Cell, 2016, 28(5): 1 108-1 126.
[21] XIE Y, CHOU L S, CUTLER A, et al. DNA macroarray profiling of Lactococcus lactis subsp lactis IL1403 gene expression during environmental stresses [J]. Applied and Environmental Microbiology, 2004, 70(11): 6 738-6 747.
[22] RYSSEL M, HVIID A M M, DAWISH M S, et al. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity [J]. Microbiology, 2014, 160(Pt11): 2 551-2 559.
[23] YUAN Zhihui, WANG Li, SUN Shutao, et al. Genetic and proteomic analyses of a Xanthomonas campestris pv. campestris purC mutant deficient in purine biosynthesis and virulence [J]. Journal of Genetics and Genomics, 2013, 40(9): 473-487.
[24] 张明阳. argGargHargR基因对Lactococcus lactis NZ9000胁迫抗性的影响[D].无锡:江南大学, 2016.
[25] 苏建坤, 王雪,卢建秋,等. OPA-FMOC在线衍生化法测定氨基酸的含量[J]. 中国实验方剂学杂志, 2012, 18(15): 135-138.
[26] OSULLIVAN E, CONDON S. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis [J]. Applied and Environmental Microbiology, 1997, 63(11): 4 210-4 215.
[27] RALLU F, GRUSS A, MAGUIN E. Lactococcus lactis and stress [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1996, 70(2-4): 243-251.
[28] FERNANDEZ M, ZUNIGA M. Amino acid catabolic pathways of lactic acid bacteria [J]. Critical Reviews in Microbiology, 2006, 32(3): 155-183.
[29] WU Guoyao. Amino acids: metabolism, functions, and nutrition [J]. Amino Acids, 2009, 37(1): 1-17.
[30] 吴重德, 黄钧,周荣清. 调控乳酸菌酸胁迫抗性研究进展[J]. 微生物学报, 2014, 54(7): 721-727.
[31] BROADBENT J R, LARSEN R L, DEIBEL V, et al. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress [J]. Journal of Bacteriology, 2010, 192(9): 2 445-2 458.
[32] 张彦位. 调控天冬氨酸代谢途径提高Lactococcus lactis NZ9000的酸胁迫抗性[D].无锡:江南大学, 2018.
[33] GUCHTE M V D, SERROR P, CHERVAUX C, et al. Stress responses in lactic acid bacteria [J]. Antonie Van Leeuwenhoek, 2002, 82(1-4): 187-216.
[34] DAMIANO M A, BASTIANELLI D, DAHOUK S A, et al. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: Distribution and contribution to fitness under extremely acidic conditions [J]. Applied and Environmental Microbiology, 2015, 81(2): 578-586.
[35] WU Chongde, ZHANG Juan, CHEN Wei, et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance [J]. Applied Microbiology and Biotechnology, 2012, 93(2): 707-722.
[36] WU Rina, ZHANG Wenyi, SUN Tiansong, et al. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress [J]. International Journal of Food Microbiology, 2011, 147(3): 181-187.
[37] CARVALHO A L, CARDOSO F S, BOHN A, et al. Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance [J]. Applied and Environmental Microbiology, 2011, 77(12): 4 189-4 199.
文章导航

/