[1] BENBOUZIANE B, RIBELLES P, AUBRY C, et al. Development of a stress-inducible controlled expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces [J]. Journal of Biotechnology, 2013, 168(2): 120-129.
[2] BURGES C, O'CONNELL-MOTHERWAY M, SYBESMA W, et al. Riboflavin production in Lactococcus lactis: Potential for in situ production of vitamin-enriched foods [J]. Applied and Environmental Microbiology, 2004, 70(10): 5 769-5 777.
[3] ZHU Yan, ZHANG Yangping, LI Yin. Understanding the industrial application potential of lactic acid bacteria through genomics [J]. Applied Microbiology and Biotechnology, 2009, 83(4): 597-610.
[4] CARALHEIRO F, MONIZ P, DUARTE L C, et al. Mannitol production by lactic acid bacteria grown in supplemented carob syrup [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(1): 221-227.
[5] ZHANG Mingyang, ZHANG Juan, LIU Long, et al. Influence of key acid-resistant genes in arginine metabolism on stress tolerance in Lactococcus lactis NZ9000 [J]. Microbiology China, 2017, 44(2): 314-324.
[6] AZIZAN K A, RESSOM H W, MENDOZA E R, et al. 13C based proteinogenic amino acid (PAA) and metabolic flux ratio analysis of Lactococcus lactis reveals changes in pentose phosphate (PP) pathway in response to agitation and temperature related stresses [J]. Peerj, 2017, 5(7): 24.
[7] WEIDMANN S, MAITRE M, LAURENT J, et al. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance [J]. International Journal of Food Microbiology, 2017, 247: 18-23.
[8] JIN Junhua, QIN Qian, GUO Huiyuan, et al. Effect of pre-stressing on the acid-stress response in Bifidobacterium revealed using proteomic and physiological approaches [J]. Plos One, 2015, 10(2): 10-14.
[9] DE A M, DI C R, HUET C, et al. Heat shock response in lactobacillus plantarum [J]. Applied and Environmental Microbiology, 2004, 70(3): 1 336-1 346.
[10] ZHANG Juan, WU Chongde, DU Guocheng, et al. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress [J]. Biotechnology and Bioprocess Engineering, 2012, 17(2): 283-289.
[11] BAS T, ANNE W, LEO J, et al. Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation [J]. Plos Computational Biology, 2009, 5(6): e1000410.
[12] ZHANG Juan, FU Ruiyan, HUGENHOLTZ J, et al. Glutathione protects Lactococcus lactis against acid stress [J]. Applied and Environmental Microbiology, 2007, 73(16): 5 268-5 275.
[13] WU Chongde, ZHANG Juan, DU Guocheng, et al. Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress [J]. Bioresource Technology, 2013, 143(6): 238-241.
[14] ALMARZA O, NUNEZ D, TOLEDO H. The DNA-Binding protein HU has a regulatory role in the acid stress response mechanism in Helicobacter pylori [J]. Helicobacter, 2015, 20(1): 29-40.
[15] BOVE C G, ANGELIS M D, GATTI M, et al. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium [J]. Proteomics, 2012, 12(21): 3 206-3 218.
[16] WU Chongde, ZHANG Juan, CHEN Wei, et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance [J]. Applied Microbiology and Biotechnology, 2012, 93(2): 707-722.
[17] 张彦位, 张娟,堵国成,等. 天冬氨酸提高乳酸乳球菌Lactococcus lactis NZ9000酸胁迫抗性的作用机制[J]. 微生物学通报,2018,45(12): 2 563-2 515.
[18] 张梦汝, 张娟,堵国成,等. 外源添加亮氨酸提高乳酸乳球菌酸胁迫抗性[J]. 食品与生物技术学报, 2015, 34(2): 134-139.
[19] CHEN J, VESTERGAARD M, JENSEN T G, et al. Finding the needle in the gaystack-the use of microfluidic droplet technology to identify vitamin-secreting lactic acid bacteria [J]. Mbio, 2017, 8(3): 12.
[20] MA Xiaofeng, WANG Wenming, BITTNER F, et al. Dual and opposing roles of xanthine dehydrogenase in defense-associated reactive oxygen species metabolism in arabidopsis [J]. Plant Cell, 2016, 28(5): 1 108-1 126.
[21] XIE Y, CHOU L S, CUTLER A, et al. DNA macroarray profiling of Lactococcus lactis subsp lactis IL1403 gene expression during environmental stresses [J]. Applied and Environmental Microbiology, 2004, 70(11): 6 738-6 747.
[22] RYSSEL M, HVIID A M M, DAWISH M S, et al. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity [J]. Microbiology, 2014, 160(Pt11): 2 551-2 559.
[23] YUAN Zhihui, WANG Li, SUN Shutao, et al. Genetic and proteomic analyses of a Xanthomonas campestris pv. campestris purC mutant deficient in purine biosynthesis and virulence [J]. Journal of Genetics and Genomics, 2013, 40(9): 473-487.
[24] 张明阳. argG、argH和argR基因对Lactococcus lactis NZ9000胁迫抗性的影响[D].无锡:江南大学, 2016.
[25] 苏建坤, 王雪,卢建秋,等. OPA-FMOC在线衍生化法测定氨基酸的含量[J]. 中国实验方剂学杂志, 2012, 18(15): 135-138.
[26] OSULLIVAN E, CONDON S. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis [J]. Applied and Environmental Microbiology, 1997, 63(11): 4 210-4 215.
[27] RALLU F, GRUSS A, MAGUIN E. Lactococcus lactis and stress [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1996, 70(2-4): 243-251.
[28] FERNANDEZ M, ZUNIGA M. Amino acid catabolic pathways of lactic acid bacteria [J]. Critical Reviews in Microbiology, 2006, 32(3): 155-183.
[29] WU Guoyao. Amino acids: metabolism, functions, and nutrition [J]. Amino Acids, 2009, 37(1): 1-17.
[30] 吴重德, 黄钧,周荣清. 调控乳酸菌酸胁迫抗性研究进展[J]. 微生物学报, 2014, 54(7): 721-727.
[31] BROADBENT J R, LARSEN R L, DEIBEL V, et al. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress [J]. Journal of Bacteriology, 2010, 192(9): 2 445-2 458.
[32] 张彦位. 调控天冬氨酸代谢途径提高Lactococcus lactis NZ9000的酸胁迫抗性[D].无锡:江南大学, 2018.
[33] GUCHTE M V D, SERROR P, CHERVAUX C, et al. Stress responses in lactic acid bacteria [J]. Antonie Van Leeuwenhoek, 2002, 82(1-4): 187-216.
[34] DAMIANO M A, BASTIANELLI D, DAHOUK S A, et al. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: Distribution and contribution to fitness under extremely acidic conditions [J]. Applied and Environmental Microbiology, 2015, 81(2): 578-586.
[35] WU Chongde, ZHANG Juan, CHEN Wei, et al. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance [J]. Applied Microbiology and Biotechnology, 2012, 93(2): 707-722.
[36] WU Rina, ZHANG Wenyi, SUN Tiansong, et al. Proteomic analysis of responses of a new probiotic bacterium Lactobacillus casei Zhang to low acid stress [J]. International Journal of Food Microbiology, 2011, 147(3): 181-187.
[37] CARVALHO A L, CARDOSO F S, BOHN A, et al. Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance [J]. Applied and Environmental Microbiology, 2011, 77(12): 4 189-4 199.