亮氨酸脱氢酶催化2-酮丁酸生成L-2-氨基丁酸需要辅酶NADH参与,构建Escherichia coli (LeuDH/FDH),通过共表达亮氨酸脱氢酶和甲酸脱氢酶实现了辅酶NADH胞内循环再生。通过产酶条件优化,提高该菌株催化制备L-2-氨基丁酸的效率。结果表明,在5 L发酵罐上,在诱导温度为22 ℃、诱导剂乳糖质量浓度为8.0 g/L和诱导时间为17 h的条件下,亮氨酸脱氢酶和甲酸脱氢酶的酶活分别达到79.2 U/g和216.1 U/g,催化效果最佳。利用该菌株全细胞为催化剂,耦合苏氨酸脱氨酶,在1 L反应体系中进行了催化反应,L-苏氨酸质量浓度为180 g/L时,无需额外添加辅酶, 8 h反应后底物转化率达到99%,L-2-氨基丁酸e.e.值99.5%以上,时空产率19.3 g/(L·h)。该研究为建立高效、低成本的L-2-氨基丁酸工业化生产方法提供了基础。
A recombinant Escherichia coli (LeuDH/FDH) that co-expressed leucine dehydrogenase and formate dehydrogenase was constructed to allow intracellular coenzyme NADH regeneration, and the cultivation condition was optimized. The results demonstrated that the highest catalytic efficiency was achieved in a 5 L fermenter at 22 ℃ with 8.0 g/L lactose and inducted for 17 h. Under this condition, the activities of leucine dehydrogenase and formate dehydrogenase reached 79.2 U/g and 216.1 U/g, respectively. By using the whole cells and coupled with threonine deaminase in a 1 L bioreactor, the conversation rate of L-2-aminobutyric acid reached 99% with the yield of 19.3 g/(L·h) in 8 h from 180 g/L L-threonine without NADH added. The e.e. value of L-2-aminobutyric acid was over 99.5%. This provides an efficient and low-cost method for industrial production of L-2-aminobutyric acid.
[1] 张世和, 白国义. 乙胺丁醇的合成研究进展[J]. 精细与专用化学品, 2005, 13(8): 13-15;25.
[2] 曹炜, 郑小玲. 抗癫痫药物左乙拉西坦的合成研究进展[J]. 齐鲁药事, 2012, 31(10): 602-604.
[3] 黄红霞, 林原斌. 3, 4-亚甲二氧基苯乙胺的合成新方法[J]. 精细与专用化学品, 2007, 15(12): 11-13.
[4] CHAN L, STEFANAC T, TURCOTTE N, et al. Design and evaluation of dihydroisoquinolines as potent and orally bioavailable human cytomegalorirus inhibitor [J]. J Bioorg Med Chem Lett, 2000, 10(13): 1 477-1 480.
[5] 白国义,陈立功,邢鹏,等. 乙胺丁醇的合成[J]. 精细化工, 2004, 21(12): 943-945;949.
[6] 奚强, 林丫丫,王冲,等. 2-氨基丁酸的合成研究[J]. 武汉工程大学学报, 2007, 29(4): 15-17.
[7] FOTHERINGHAM I G, GRINTER N, PANTALEONE D P, et al. Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12 [J]. Bioorganic and Medicinal Chemistry, 1999, 7 (10): 2 209-2 213.
[8] FOTHERINGHAM I G. Transaminase biotransformation process: US, 6197558B1 [P]. 2001-03- 06.
[9] ZHU L, TAO R S, WANG Y, et al. Removal of L-alanine from the production of L-2-aminobutyric acid by introduction of alanine racemase and D-amino acid oxidase [J]. Applied Microbiology and Biotechnology, 2011, 90(3): 903-910.
[10] AGER D J, LI T, PANTALEONE D P, et al. Novel biosynthetic routes to non-proteinogenic amino acids as chiral pharmaceutical intermediates [J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11(4-6): 199-205.
[11] PARK E S, DONG G Y, SHIN J S. ω-Transaminase-catalyzed asymmetric synthesis of unnatural amino acids using isopropylamine as an amino donor [J]. Organic and biomolecular chemistry, 2013, 11(40): 6 929-6 933.
[12] SHIN J S, KIM B G. Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from achiral reactants[J]. Biotechnology Letters, 2009, 31(10): 1 595-15 99.
[13] MALIK M S, PARK E S, SHIN J S. ω-Transaminase-catalyzed kinetic resolution of chiral amines using L-threonine as an amino acceptor precursor [J]. Green Chemistry, 2012, 14(8): 2 137-2 140.
[14] 苏金环, 郭皓,曾聪明,等. 生物催化一锅法制备2-氨基丁酸[J]. 精细化工, 2012, 29(9): 921-924;936.
[15] TAO R S, JIANG Y, ZHU F Y, et al. A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADH regeneration system based on L-leucine dehydrogenase and formate dehydrogenase [J]. Biotechnology Letters, 2014, 36(4): 835-841.
[16] GALKIN A, KULAKOVA L, YOSHIMURA T, et al. Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes [J]. Applied and Environmental Microbiology, 1997, 63(12): 4 651-4 656.
[17] YASUKAWA K, HASEMI R, ASANO Y. Dynamic kineticresolution of alpha-aminonitriles to form chiral alpha-amino acids [J]. Advanced Synthesis and Catalysis, 2011, 353 (13): 2 328-2 332.
[18] 徐建妙,赵哲,陈策,等. 甲酸脱氢酶外源表达发酵条件优化及在L-2-氨基丁酸合成中的应用[J]. 食品与发酵工业, 2018, 44 (7): 63-68.
[19] 张玉彬. 生物催化的手性合成[M]. 北京:化学工业出版社, 2001: 170-176.
[20] 徐娴, 贾红华,何冰芳,等. 甲酸脱氢酶基因在大肠杆菌Rosetta中的高效表达[J]. 食品与发酵工业, 2007, 33 (5): 5-8.
[21] 黄志华, 刘铭,王宝光,等. 甲酸脱氢酶用于辅酶NADH再生的研究进展[J]. 过程工程学报, 2006, (6): 1 011-1 016.
[22] WANG Y H, JING C F, YANG B, et a1. Production of a new sea anemone neurotoxin by recombinant Escherichia coli: optimization of culture conditions using response surface methodology [J]. Process Biochem, 2005, 40 (8): 2 721-2 728.
[23] XU G, JIANG Y, TAO R S. A recyclable biotransformation system for L-2-aminobutyric acid production based on immobilized enzyme technology [J]. Biotechnol Lett, 2015, 38(1): 123-129.
[24] 余龙, 陈寅,周丽,等. 双酶偶联催化马来酸生成L-天冬氨酸[J]. 食品与发酵工业, 2018, 44 (8): 20-26.
[25] PARK E, KIM M, SHINA J S. One-pot conversion of L-threonine into L-homoalanine: biocatalytic production of an unnatural amino acid from a natural one [J]. Adv Synth Catal, 2010, 352 (18): 3 391-3 398.
[26] ANSORGE M B, KULA M R. Production of recombinant L-leucine dehydrogenase from Bacillus cereus in pilot scale using the runaway replication system E. coli (pIET98) [J]. Biotechnol Bioeng, 2000, 68(5): 557-562.
[27] 刘维明,杨震炯,罗积杏,等. 重组大肠杆菌共表达亮氨酸脱氢酶和甲酸脱氢酶发酵条件优化[J]. 生物加工过程, 2015, 13(4): 23-28.
[28] 刘珊,李元,祝俊. 偶联基于酮还原酶的NADH再生系统一锅法酶催化合成L-2-氨基丁酸[J]. 中国生物工程杂志, 2017, 37 (1): 64-70.
[29] 郭红颜,梁蕊,李航,等. 用于合成L-2-氨基丁酸基因工程菌的构建[J]. 中国医药工业杂志, 2015, 46 (10): 1 076-1 079.