研究报告

热诱导大豆分离蛋白对肌原纤维蛋白凝胶特性的影响

  • 武雅琴 ,
  • 王莉莎 ,
  • 邹咪 ,
  • 包海蓉
展开
  • 1(上海海洋大学 食品学院,上海,201306)
    2(上海水产品加工及贮藏工程技术研究中心,上海,201306)
    3(农业部水产品加工贮藏保鲜质量安全风险评估实验室(上海),上海,201306)
硕士研究生(包海蓉副教授为通讯作者,E-mail:hrbao@shou.edu.cn)。

收稿日期: 2018-09-30

  网络出版日期: 2019-06-17

基金资助

国家高技术研究发展计划“863”计划(2012AA092302);中央级公益性科研院所业务费专项资金(东海水产研究所)资助项目(2018M04)

Effects of heat-induced soy protein isolate on gel properties of myofibrillar proteins

  • WU Yaqin ,
  • WANG Lisha ,
  • ZOU Mi ,
  • BAO Hairong
Expand
  • 1(College of Food Science and Technology,Shanghai Ocean University,Shanghai 201306,China)
    2(ShanghaiEnigeering Research Center of Aguatic-Product Processing&Preservation,Shanghai 201306,China)
    3(Laboratory of Quality and Satefy Risk Assessment for Aguatic Products on Storage and Preservation(Shanghai),Ministry of Agricuture,Shanghai 201306,China)

Received date: 2018-09-30

  Online published: 2019-06-17

摘要

大豆分离蛋白(soybean protein isolate,SPI)经60、80和95 ℃热处理,分别与鱼肌原纤维蛋白(myofibrillar protein,MP)按质量比1∶3(总蛋白质量浓度45 g/L)热诱导得到混合蛋白凝胶。结果表明,从流变特性来看,与天然大豆分离蛋白复合凝胶(MP-N-SPI)相比,MP-SPI(80 ℃)的储能模量值(G′)(P<0.05)显著上升,而MP-SPI(60 ℃和95 ℃)却低于MP-N-SPI。在MP中加入SPI后,复合凝胶的持水性均高于单纯MP,适宜的热诱导温度SPI(80 ℃),可以明显改善复合凝胶的持水力(water holding capacity,WHC)(P<0.05)。从质构特性看出,MP-SPI(95 ℃)的硬度显著提升。电泳图谱显示,MP-N-SPI凝胶条带与单纯MP无明显差异,MP-SPI(80 ℃和95 ℃)条带比MP-N-SPI和MP-SPI(60 ℃)浅,说明预热SPI(80 ℃或95 ℃)容易与MP相互作用。化学力测定显示,预热大豆蛋白与MP的凝胶网络形成主要是疏水作用的结果,而氢键和二硫键不是复合凝胶形成的主要化学力。由此可见,适宜的热诱导大豆分离蛋白,可以明显改善复合凝胶的特性。

本文引用格式

武雅琴 , 王莉莎 , 邹咪 , 包海蓉 . 热诱导大豆分离蛋白对肌原纤维蛋白凝胶特性的影响[J]. 食品与发酵工业, 2019 , 45(10) : 60 -65 . DOI: 10.13995/j.cnki.11-1802/ts.018951

Abstract

Soybean protein isolate (SPI) was treated at 60, 80, and 95 ℃, respectively, with fish myofibrillar protein (MP) in a ratio of 1∶3 (total protein concentration 45 g/L), to form a mixed protein gel by heat induction. The results showed that compared with natural soy protein isolate gel (MP-N-SPI), the storage modulus value (G′) of MP-SPI at 80 ℃ increased significantly (P<0.05), while the value was lower at 60 and 95 ℃. After adding SPI to MP, the water holding capacity (WHC) of the composite gel was higher than that of MP alone. A suitable heat-induced temperature of SPI (80 ℃) could significantly improve the WHC of the composite gel (P<0.05). Moreover, the hardness of MP-SPI at 95 ℃ significantly improved. The SDS-PAGE showed that there were no significant differences in bands between MP-N-SPI and MP alone. The bands of MP-SPI at 80 and 95 ℃ were lighter than MP-N-SPI and MP-SPI at 60 ℃, which indicated that pre-heated SPI at 80 or 95 ℃ was easy to interact with MP. Chemical force measurements showed that the gel network of preheated soy protein and MP mainly formed by hydrophobic interaction. In conclusion, a suitable heat-induced SPI can significantly improve the properties of the composite gel.

参考文献

[1] 方健民,黄富雄,郑钟新等.金枪鱼的营养价值和加工利用[J]. 水产科技, 2006 (2):16-32.
[2] 李萌立,杨梦昕,李忠海,等.加工方式对鱼糜凝胶性质影响研究进展[J]. 食品工业科技, 2015, 36(8):370-373.
[3] 王新萍. 金枪鱼碎肉的酶解与产物改性利用研究[D]. 浙江工业大学, 2013.
[4] FENG J, XIONG Y L. Interaction of myofibrillar and preheated soy proteins[J]. Journal of Food Science, 2002, 67(8): 2 851-2 856.
[5] PETRUCCELLI S, AÑÓN M C. Relationship between the method of obtention and the structural and functional properties of soy proteins isolates. 1. Structural and hydration properties[J]. Journal of Agricultural and Food Chemistry, 1994, 42(10): 2 161-2 169.
[6] SCILINGO A A, AAÑÓN M C. Calorimetric study of soybean protein isolates: effect of calcium and thermal treatments[J]. Journal of agricultural and food chemistry, 1996, 44(Agric. Food Chem,1996,44(11):3 484-3 488.
[7] WANG Z, LIANG J, JIANG L, et al. Effect of the interaction between myofibrillar protein and heat-induced soy protein isolates on gel properties[J]. CyTA-Journal of Food, 2015, 13(4): 527-534.
[8] 李艳青. 鲢鱼组织蛋白酶活性及提高鱼糜凝胶特性方法的研究[D]. 哈尔滨:东北农业大学,2004.
[9] WOLF W J. Soybean proteins. Their functional, chemical, and physical properties[J]. Journal of Agricultural and Food Chemistry, 1970, 18(6): 969-976.
[10] KATOH N. A new method for evaluation of the quality of frozen surimi from Alaska pollack: Relationship between myofibrillar ATPase activity and kamaboko forming ability of frozen surimi[J]. Nippon Suisan Gakkaishi, 1979, 45: 1 027-1 032.
[11] GORNALL A G, BARDAWILL C J, DAVID M M. Determination of serum proteins by means of the biuret reaction[J]. Journal of biological chemistry, 1949, 177(2): 751-766.
[12] SALVADOR P, TOLDRÀ M, SAGUER E, et al. Microstructure-function relationships of heat-induced gels of porcine haemoglobin[J]. Food Hydrocolloids, 2009, 23(7):1 654-1 659.
[13] JIANG J, XIONG Y L. Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase.[J]. Meat Science, 2013, 93(3):469-476.
[14] NIU H, LI Y, HAN J, et al. Gelation and rheological properties of myofibrillar proteins influenced by the addition of soybean protein isolates subjected to an acidic pH treatment combined with a mild heating[J]. Food Hydrocolloids, 2017, 70.
[15] VISESSANGUAN W, OGAWA M, NAKAI S, et al. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin[J]. Journal of Agricultural & Food Chemistry, 2000, 48(4):1 016-1 023.
[16] 于巍, 周坚. 鱼类肌原纤维蛋白热凝及流变特性研究进展[J]. 食品科技, 2007, 32(11):14-16.
[17] BRENNER T, JOHANNSSON R, NICOLAI T. Characterisation and thermo-reversible gelation of cod muscle protein isolates[J]. Food Chemistry, 2009, 115(1):26-31.
[18] LIU Q, BAO H, XI C, et al. Rheological characterization of tuna myofibrillar protein in linear and nonlinear viscoelastic regions[J]. Journal of Food Engineering, 2014, 121(1):58-63.
[19] RAMÍREZ-SUÁREZ J C, XIONG Y L. Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures[J]. Meat Science, 2003, 65(2):899-907.
[20] PETRUCCELLI S, AÑÓN M C. Relationship between the method of obtention and the structural and functional properties of soy proteins isolates. 1. Structural and hydration properties[J]. Journal of Agricultural and Food Chemistry, 1994, 42(10): 2 161-2 169.
[21] SCILINGO A A, AÑÓN M C. Calorimetric study of soybean protein isolates: Effect of calcium and thermal treatments[J]. Journal of Agricultural and Food Chemistry, 1996, 44(11):3 484-3 488.
[22] SUN X D, ARNTFIELD S D. Molecular forces involved in heat-induced pea protein gelation: Effects of various reagents on the rheological properties of salt-extracted pea protein gels[J]. Food Hydrocolloids, 2012, 28(2):325-332.
[23] LIU R, ZHAO S M, XIE B J, et al. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties[J]. Food Hydrocolloids, 2011, 25(5):898-906.
[24] 郭凤仙. 热处理对大豆分离蛋白结构及功能特性的影响[D]. 无锡:江南大学, 2009.
[25] HUANG X, CHEN L, FANG Y, et al. Interactions and gel strength of mixed myofibrillar with soy protein, 7S globulin and enzyme-hydrolyzed soy proteins[J]. European Food Research & Technology, 2010, 231(5):751-762.
[26] O′KANE F E, HAPPE R P, VEREIJKEN J M, et al. Heat-induced gelation of pea legumin: Comparison with soybean glycinin[J]. J Agric Food Chem, 2004, 52(16):5 071-5 078.
文章导航

/