利用优化的甲基纤维素培养基与传统的平板涂布、显微操作、有限稀释和琼脂糖培养基方法,对蛹虫草菌孢子悬液(理论活孢子数量为150个)进行单孢分离,比较可分离单菌落数量、操作简易度及分离效率等参数,分析甲基纤维素半固体培养基分离真菌单孢的可行性。结果表明,甲基纤维素的优化质量浓度为23 g/L。甲基纤维素培养基、平板涂布、显微操作、有限稀释和琼脂糖培养基方法依次获得可分离单菌落96、70、37、35和26个,甲基纤维素培养基方法的操作最简单、便捷和高效。优化的甲基纤维素半固体培养基可有效分离真菌单孢,简便易行,应用潜力优于传统方法。
Taking Cordyceps militaris as an illustrative example, a novel method that opened up an optional way for the isolation of fungal single-spores based on semisolid methylcellulose medium was developed. Optimized methylcellulose medium and traditional methods (spread plate, micromanipulation, limited dilution, and agarose medium) were used to isolate single-spores of Cordyceps militaris spore suspension that theoretically contained 150 living spores. Comparing the number of partible single colonies, operation simplicity and the efficiency of single-spore isolation, the feasibility of this novel method to isolate fungal single-spores was investigated. The optimized concentration of methylcellulose in semisolid medium was 23 g/L. The number of partible single colonies obtained using the optimized methylcellulose medium, spread plate, micromanipulation, limited dilution and optimized agarose medium reached 96、70、37、35 and 26, respectively. This novel method was proved to be the simplest, most convenient and efficient among these methods. Fungal single-spores could be simply, efficiently and conveniently isolated using optimized methylcellulose medium. The applied potential of the novel method is superior to that of traditional methods.
[1] SELVAKUMAR G, SHAGOL C C, KANG Y, et al. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host[J]. J Appl Microbiol, 2018, 124(6): 1 556-1 565.
[2] GARCIA M V, PARUSSOLO G, MORO C B, et al. Fungi in spices and mycotoxigenic potential of some Aspergilli isolated[J]. Food Microbiol, 2018, 73: 93-98.
[3] NOMAN E A, AL-GHEETHI A A, RAHMAN N N, et al. Assessment of relevant fungal species in clinical solid wastes[J]. Environ. Sci. Pollut. Res. Int., 2016, 23(19): 19 806-19 824.
[4] LIM S Y, LEE S, KONG H G, et al. Entomopathogenicity of Simplicillium lanosoniveum isolated in Korea[J]. Mycobiology, 2014, 42(4): 317-321.
[5] YUAN Y, WU F, SI J, et al. Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide[J]. Genomics, 2019, 111(1): 50-58.
[6] KOYAMA A, PIETRANGELO O, SANDERSON L, et al. An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts[J]. Mycorrhiza, 2017, 27(6): 553-563.
[7] 刘一凡, 王赛,常虹,等. 芸薹根肿菌单孢分离技术体系构建及沈阳地区根肿菌的鉴定[J]. 园艺学报, 2017, 44(12): 2 383-2 390.
[8] RIAHI R, GOGOI P, SEPEHRI S, et al. A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer[J]. Int J Oncol, 2014, 44(6): 1 870-1 878.
[9] GUPTA V, JAFFERJI I, GARZA M, et al. ApoStreamTM, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood[J]. Biomicrofluidics, 2012, 6(2): 24133.
[10] KIM S, HAN S I, PARK M J, et al. Circulating tumor cell microseparator based on lateral magnetophoresis and immunomagnetic nanobeads[J]. Analytical Chemistry, 2013, 85(5): 2 779-2 786.
[11] WELCH J D, WILLIAMS L A, DISALVO M, et al. Selective single cell isolation for genomics using microraft arrays[J]. Nucleic Acids Res., 2016, 44(17): 8 292-8 301.
[12] GROSS A, SCHOENDUBE J, ZIMMERMANN S, et al. Technologies for single-cell isolation[J]. Int J Mol Sci, 2015, 16(8): 16 897-16 919.
[13] SUZUKI K, MURANO T, SHIMIZU H, et al. Single cell analysis of Crohn's disease patient-derived small intestinal organoids reveals disease activity-dependent modification of stem cell properties[J]. J Gastroenterol, 2018, 53(9): 1 035-1 047.
[14] 任瑞敏, 王云龙,张怡青,等. 利用改良后的脾内免疫和半固体培养基法制备单克隆抗体[J]. 生物技术通报, 2013, 8: 166-169.
[15] 陈沙, 张凤英,罗秋水,等. 越橘抗紫外线和微波辐射作用的研究[J]. 中国食品学报, 2012, 12(1): 124-129.
[16] 段斌, 葛永红,李灿婴,等. 香菜精油的稳定性及其抑菌和抗氧化作用[J]. 食品与发酵工业, 2019, 45(1): 145-151.
[17] 李小芬, 詹康,张响英,等. 山羊小肠上皮细胞分离培养与鉴定[J]. 中国农业大学学报, 2017, 22(10): 91-96.
[18] 魏峰, 许越,张西臣,等. 利用单孢子囊接种技术建立鸡柔嫩艾美耳球虫克隆[J]. 中国兽医学报, 2010, 30(12): 1 610-1 613.
[19] 李豪, 白光剑,吴静,等. 紫外-常压室温等离子体复合诱变高产纤维素酶真菌[J]. 食品与发酵工业, 2019,45(387):81-86.
[20] CHRISTIANSEN E M, YANG S J, ANDO D M, et al. In silico labeling: predicting fluorescent labels in unlabeled images[J]. Cell, 2018, 173(3): 792-803.
[21] GRANDA J M, DONINA L, DRAGONE V, et al. Controlling an organic synthesis robot with machine learning to search for new reactivity[J]. Nature, 2018, 559(7 714): 377-381.