[1] GU Y, XU X, WU Y, et al. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications [J]. Metabolic Engineering, 2018, 50:109-121.
[2] VAN DIJL J M, HECKER M. Bacillus subtilis: From soil bacterium to super-secreting cell factory [J]. Microbial Cell Factories, 2013, 12(1): 3.
[3] CUI W, HAN L, SUO F, et al. Exploitation of Bacillus subtilis as a robust workhorse for production of heterozygous proteins and beyond [J]. World Journal of Microbiology and Biotechnology, 2018, 34(10): 145.
[4] CHEN P T, CHEN Y C, LIN Y Y, et al. Strategy for efficient production of recombinant Staphylococcus epidermidis lipase in Bacillus subtilis [J]. Biochemical Engineering Journal, 2015, 103:152-157.
[5] WESTERS L, WESTERS H, QUAX W J. Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism [J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2004, 1 694(1-3): 299-310.
[6] MENG F, ZHU X, NIE T, et al. Enhanced expression of pullulanase in Bacillus subtilis by new strong promoters mined from transcriptome data, both alone and in combination [J]. Frontiers in Microbiology, 2018, 9(2 635): 11.
[7] SEGALL-SHAPIRO T H, SONTAG E D, VOIGT C A. Engineered promoters enable constant gene expression at any copy number in bacteria [J]. Nature Biotechnology, 2018, 36(4): 352-358.
[8] MUTALIK V K, GUIMARAES J C, CAMBRAY G, et al. Precise and reliable gene expression via standard transcription and translation initiation elements [J]. Nature Methods, 2013, 10(4): 354.
[9] CUI W, SUO F, CHENG J, et al. Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis [J]. Microbial Biotechnology, 2018, 11(5): 930-942.
[10] JAN J, VALLE F, BOLIVAR F, et al. Construction of protein overproducer strains in Bacillus subtilis by an integrative approach [J]. Applied Microbiology and Biotechnology, 2001, 55(1): 69-75.
[11] GUAN C, CUI W, CHENG J, et al. Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis [J]. Microbial Cell Factories, 2016, 15(1): 66.
[12] ZHANG K, SU L, DUAN X, et al. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system [J]. Microbial Cell Factories, 2017, 16(1): 32.
[13] GUIZIOU S, SAUVEPLANE V, CHANG H J, et al. A part toolbox to tune genetic expression in Bacillus subtilis [J]. Nucleic Acids Research, 2016, 44(15): 7 495-7 508.
[14] LITHWICK G, MARGALIT H. Hierarchy of sequence-dependent features associated with prokaryotic translation [J]. Genome Research, 2003, 13(12): 2 665-2 673.
[15] WU J, LEI J, ZHANG L, et al. Improving production and bioactivity of recombinant human disintegrin domain of ADAM15 (rhADAM15) in Escherichia coli [J]. Acta Microbiologica Sinica, 2008, 48(8): 1 067-1 074.
[16] BURGESS-BROWN N A, SHARMA S, SOBOTT F, et al. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study [J]. Protein Expression and Purification, 2008, 59(1): 94-102.
[17] NOβMANN M, PIEPER J, HILLMANN F, et al. Generation of an arginine-tRNA-adapted Saccharomyces cerevisiae strain for effective heterologous protein expression [J]. Current Genetics, 2018, 64(3): 589-598.
[18] MACDONALD L E, DURBIN R K, DUNN J J, et al. Characterization of 2 types of termination signal for Bacteriophage T7 RNA polymerase [J]. Journal of Molecular Biology, 1994, 238(2): 145-158.
[19] OSTERMAN I A, EVFRATOV S A, SERGIEV P V, et al. Comparison of mRNA features affecting translation initiation and reinitiation [J]. Nucleic Acids Research, 2013, 41(1): 474-486.
[20] KOSURI S, GOODMAN D B, CAMBRAY G, et al. Composability of regulatory sequences controlling transcription and translation in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34): 14 024-14 029.
[21] ESPAH BORUJENI A, CETNAR D, FARASAT I, et al. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences [J]. Nucleic Acids Research, 2017, 45(9): 5 437-5 448.
[22] DEL VECCHIO D. Modularity, context-dependence, and insulation in engineered biological circuits [J]. Trends in Biotechnology, 2015, 33(2): 111-119.
[23] GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases [J]. Nature Methods, 2009, 6(5): 343.
[24] SPIZIZEN J. Transformation of Biochemically deficient Strains of Bacillus subtilis by deoxyribonucleate [J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44(10): 1 072-1 078.
[25] 杨扬,秦强,郭伟忠. 苯基异硫氰酸酯衍生氨基酸的高效液相色谱分析[J]. 色谱, 1994,12(4): 295-296.
[26] RAMJEE M K, GENSCHEL U, ABELL C, et al. Escherichia coli L-aspartate-alpha-decarboxylase: Preprotein processing and observation of reaction intermediates by electrospray mass spectrometry [J]. Biochemical Journal, 1997, 323(3): 661-669.
[27] 高宇. 一釜双酶法转化富马酸制备β-丙氨酸催化体系的构建及工艺优化[D]. 无锡:江南大学, 2017.
[28] WITTIG I, KARAS M, SCHAEGGER H. High resolution clear native electrophoresis for In-gel functional assays and fluorescence studies of membrane protein complexes [J]. Molecular & Cellular Proteomics, 2007, 6(7): 1 215-1 225.
[29] QIAN Y, LIU J, SONG W, et al. Production of β-alanine from fumaric acid using a dual-enzyme cascade [J]. ChemCatChem, 2018, 10(21): 4 984-4 991.
[30] GUAN C, CUI W, CHENG J, et al. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis [J]. New Biotechnology, 2016, 33(3): 372-379.
[31] ZONG Y, ZHANG H M, LYU C, et al. Insulated transcriptional elements enable precise design of genetic circuits [J]. Nature Communications, 2017, 8(1): 52.