研究报告

His-pull down联合质谱鉴定谷氨酸棒杆菌中乙酰羟酸合酶IlvN的相互作用蛋白

  • 侯正杰 ,
  • 张权威 ,
  • 莫晓琳 ,
  • 夏利 ,
  • 谭淼 ,
  • 孙全伟 ,
  • 马倩 ,
  • 陈宁
展开
  • 1 (天津科技大学 生物工程学院,天津,300457)
    2 (代谢控制发酵技术国家地方联合工程实验室,天津,300457)
    3 (天津市微生物代谢与发酵过程控制技术工程中心,天津,300457)
侯正杰硕士研究生和张权威硕士为共同第一作者(马倩讲师和陈宁教授为共同通讯作者,E-mail:qianma1987@tust.edu.cn,ningch@tust.edu.cn)。

收稿日期: 2019-03-07

  网络出版日期: 2019-09-23

基金资助

天津市科学基金项目(17JCQNJ09500);国家自然科学基金项目(21808186)

Identification of protein interaction with acetohydroxy acid synthase IlvN in Corynebacterium glutamicum by his-pull down combined with mass spectrometry

  • HOU Zhengjie ,
  • ZHANG Quanwei ,
  • MO Xiaolin ,
  • XIA Li ,
  • TAN Miao ,
  • SUN Quanwei ,
  • MA Qian ,
  • CHEN Ning
Expand
  • 1 (College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China)
    2 (National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China)
    3 (Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China)

Received date: 2019-03-07

  Online published: 2019-09-23

摘要

以谷氨酸棒杆菌关键酶乙酰羟酸合酶调节亚基IlvN的相互作用蛋白研究为切入点,筛选出与其存在相互作用的蛋白。针对实验室选育的1株缬氨酸高产菌株Corynebacterium glutamicum XV,利用his-pull down技术捕获与乙酰羟酸合酶存在相互作用的蛋白质,通过液质联用的方法对差异蛋白进行鉴定,经蛋白电泳和液质分析后,鉴定得到45种蛋白,其中,大部分蛋白为参与翻译过程的核糖体蛋白,此外,还包括参与能量产生与转换、氨基酸转运与代谢、碳水化合物转运与代谢、脂转运与代谢、信号传导等过程的蛋白质。乙酰羟酸合酶是支链氨基酸合成过程中的一个重要关键酶,与其存在相互作用的蛋白涉及代谢过程中的多个方面,这些相互作用的蛋白对于支链氨基酸的合成代谢可能产生影响,所得蛋白相互作用结果对进一步指导协调代谢工程改造具有重要的意义。

本文引用格式

侯正杰 , 张权威 , 莫晓琳 , 夏利 , 谭淼 , 孙全伟 , 马倩 , 陈宁 . His-pull down联合质谱鉴定谷氨酸棒杆菌中乙酰羟酸合酶IlvN的相互作用蛋白[J]. 食品与发酵工业, 2019 , 45(16) : 11 -17 . DOI: 10.13995/j.cnki.11-1802/ts.020456

Abstract

Proteins that interacted with the regulatory subunit of acetohydroxy acid synthase (IlvN) in Corynebacterium glutamicum were studied by his-pull down technique and liquid chromatography-mass spectrometry. Totally, 45 proteins were identified and most of them were ribosomal proteins involved in translation. The proteins involved in energy production and conversion, signal transduction , as well as transport and metabolism of amino acids, carbohydrates and lipids were also included. As acetohydroxy acid synthase is a key enzyme in branched-chain amino acid synthesis, the identification of its interacting proteins has great significance for further coordinate metabolic engineering.

参考文献

[1] BONNEFOY M, LAVILLE M, ECOCHARD R, et al. Effects of branched amino acids supplementation in malnourished elderly with catabolic status[J]. The Journal of Nutrition, Health & Aging, 2010, 14(7): 579-584.
[2] WANG X, ZHANG H, et al. Production of L-valine from metabolically engineered Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2018, 102(7): 4 319-4 330.
[3] VOGT M, KRUMBACH K, et al.The contest for precursors: Channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation[J]. Applied Microbiology and Biotechnology, 2014, 99(2):791-800.
[4] 陈丽,周美华.氨基酸型表面活性剂研究动态[J].精细与专用化学品,2004,12(19): 7-11.
[5] LIU Y, LI Y, et al. Acetohydroxyacid synthases: evolution, structure, and function[J]. Applied Microbiology and Biotechnology, 2016, 100(20): 8 633-8 649.
[6] ZHEN L, SHEN Y, et al. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(2): 123-139.
[7] 董存涛,涛高卫.霍静倩,等.基于氨基酸代谢途径除草剂靶标库的建立及其在反向寻靶中的应用[J].河北农业大学学报, 2018,41(4): 42-49.
[8] 丁飞.发酵法生产L-亮氨酸的补料控制条件的优化[J].轻工科技, 2015, 31(6): 1-3.
[9] VOGT M, HAAS S,et al. Pushing product formation to its limit: Metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction[J]. Metabolic Engineering, 2014, 22: 40-52.
[10] 张海灵.系统代谢工程改造谷氨酸棒状杆菌生产L-缬氨酸[D].无锡:江南大学, 2018.
[11] SONG Y, LI J, SHIN H, et al. One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris[J]. Scientific Report, 2015, 5(1):12 614.
[12] 曾邦定,王明兹,黄钦耿,等.支链氨基酸合成调控机制及菌种选育策略研究进展[J].氨基酸和生物资源,2013,35(1): 39-45.
[13] 张伟国,郭燕风.支链氨基酸生物合成及其代谢工程育种研究进展[J].食品与生物技术学报,2014,3(2):120-126.
[14] BECKER J, WITTMANN C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory[J]. Current Opinion in Biotechnology, 2012, 23(4): 631-640.
[15] OLDIGES M, EIKMANNS B J, BLOMBACH B, et al. Application of metabolic engineering for the biotechnological production of L-valine[J]. Applied Microbiology and Biotechnology, 2014, 98(13): 5 859-5 870.
[16] GUO Y, HAN M, XU J, et al. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum[J]. Protein Expression and Purification,2015,109: 106-112.
[17] ELIŠÁKOVÁ V, PÁTEK M, HOLÁKO J, el al. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2005, 71(1): 207-213.
[18] YIN L, HU X, XU D, et al. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum[J]. Metabolic Engineering, 2012, 14(5): 542-550.
[19] HOU X, GE X, WU D, et al. Improvement of L-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBNrC genes[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(1): 63-72.
[20] 胡家,郑帅,胡科,等.通过液质联用鉴定蛋白质相互作用方法的建立[J].首都医科大学学报,2013,34(3):461-465.
文章导航

/