研究报告

多形拟杆菌对小鼠急性铅毒性的缓解作用

  • 屈定武 ,
  • 翟齐啸 ,
  • 于雷雷 ,
  • 田丰伟 ,
  • 赵建新 ,
  • 张灏 ,
  • 陈卫
展开
  • (江南大学 食品学院,江苏 无锡,214122)
硕士研究生(陈卫教授为通讯作者,E-mail:weichen@jiangnan.edu.cn)。

收稿日期: 2019-03-04

  网络出版日期: 2019-09-23

基金资助

国家自然科学基金重点项目(31530056)

Bacteroides thetaiotaomicron alleviated the acute lead toxicity in mouse

  • QU Dingwu ,
  • ZHAI Qixiao ,
  • YU Leilei ,
  • TIAN Fengwei ,
  • ZHAO Jianxin ,
  • ZHANG Hao ,
  • CHEN Wei
Expand
  • (School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)

Received date: 2019-03-04

  Online published: 2019-09-23

摘要

为探究多形拟杆菌对小鼠急性铅毒性的影响,在急性铅暴露期间灌胃多形拟杆菌FTJS-8-K,测定了小鼠组织、粪便及血液中铅含量、肝肾功能损伤程度、肠屏障功能及肠道菌群的变化。结果表明,补充多形拟杆菌FTJS-8-K,可促进铅随粪便排出,减少组织铅蓄积,恢复了肝肾组织中丙二醛、谷胱甘肽水平,降低了氧化应激损伤的程度,提高了结肠与小肠中ZO-1、Occludin mRNA的表达,改善了由于急性铅暴露引起的肠道通透性增加,促使肠道中短链脂肪酸(short chain fatty acids,SCFAs)含量增加。同时,多形拟杆菌FTJS-8-K可以改善急性铅暴露引起的肠道菌群紊乱,降低肠杆菌、假单胞菌属等条件致病菌的丰度,增加了瘤胃球菌、Rikenellaceae__unclassifiedS24-7__unclassified等的丰度。综上,多形拟杆菌FTJS-8-K可以显著缓解铅暴露引起的机体损伤,为今后通过膳食干预策略拮抗铅毒性提供了参考依据。

本文引用格式

屈定武 , 翟齐啸 , 于雷雷 , 田丰伟 , 赵建新 , 张灏 , 陈卫 . 多形拟杆菌对小鼠急性铅毒性的缓解作用[J]. 食品与发酵工业, 2019 , 45(16) : 54 -62 . DOI: 10.13995/j.cnki.11-1802/ts.020419

Abstract

This study evaluated the modulating effects of Bacteroides thetaiotaomicron(B.thetaiotaomicron) on acute lead (Pb) toxicity. B. thetaiotaomicron FTJS-8-K was orally administrated to mice during acute Pb exposure followed by measurement of the contents of Pb in tissues, feces and blood, the function of liver, kidney and intestinal barrier, and analysis of the gut microbiota. The results showed that B. thetaiotaomicron FTJS-8-K could promote the excretion of Pb in feces and reduce Pb accumulation in tissues, which consequently reduced oxidative stress by restoring the levels of malondialdehyde and glutathione in the liver and kidney. Besides, the expressions of ZO-1 and Occludin increased in colon and small intestine, the intestinal permeability improved and the level of short chain fatty acids in intestinal tract increased. In addition, strain FTJS-8-K significantly improved gut bacterial community, as the abundances of Enterobacter sp. and Pseudomonas sp. decreased, while the abundances of Ruminococcus, Rikenellaceae unclassified and S24-7 unclassified increased. Therefore, B. thetaiotaomicron FTJS-8-K can significantly alleviate damages to body caused by Pb, which indicates the potentials of reducing heavy metal toxicity by diets.

参考文献

[1] CORNELIS R,CARUSO J,CREWS H, et al. Chapter 2.10.3. Speciation of Lead in Occupational Exposure and Clinical Health Aspects[M]. Chichester,UK:John Wiley & Sons, Ltd, 2005:252-276.
[2] ISLAM E, YANG X E, HE Z L, et al. Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops[J]. J Zhejiang Univ Sci B, 2007, 8(1): 1-13.
[3] PAPANIKOLAOU N C, HATZIDAKI E G, BELIVANIS S, et al. Lead toxicity update. A brief review[J]. Med Sci Monit, 2005, 11(10): 329-336.
[4] FLORA G, GUPTA D, TIWARI A. Toxicity of lead: A review with recent updates[J]. Interdiscip Toxicol, 2012, 5(2): 47-58.
[5] WITESKA M, KONDERA E, SZYMANSKA M, et al. Hematologicalchanges in common Carp (Cyprinus carpio L.) after short-term lead (Pb) exposure[J]. Polish Journal of Environmental Studies, 2010, 19(4): 825-831.
[6] ESCRIBANO A, REVILLÁ M, HERNÁNDEZ E R, et al. Effect of lead on bone development and bone mass: A morphometric, densitometric, and histomorphometric study in growing rats[J]. Calcif Tissue Int, 1997, 60(2): 200-203.
[7] MILLER T E, GOLEMBOSKI K A, HA R S, et al. Developmental exposure to lead causes persistent immunotoxicity infischer 344 rats[J]. Toxicol Sci, 1998, 42(2): 129-135.
[8] SANDHIR R, GILL K D. Effect of lead on lipid peroxidation in liver of rats[J]. Biol Trace Elem Res, 1995, 48(1): 91-97.
[9] VAN E G, VAN G, VINK H H. The induction of renal tumours by feeding of basic lead acetate to rats[J]. Br J Cancer, 1962, 16(2): 289-297.
[10] PANDE M, FLORA S J S. Lead induced oxidative damage and its response to combined administration of α-lipoic acid and succimers in rats[J]. Toxicology, 2002, 177(2): 187-196.
[11] ELSENHANS B, JANSER H, WINDISCH W, et al. Does lead use the intestinal absorptive pathways of iron? Impact of iron status on murine.210Pb and 59Fe absorption in duodenum and ileum in vivo[J]. Toxicology, 2011, 284(1): 7-11.
[12] DUIZER E, GILDE A J, VERSANTVOORT C H, et al. Effects of cadmium chloride on the paracellular barrier function of intestinal epithelial cell lines[J]. Toxicol Appl Pharmacol, 1999, 155(2): 117-126.
[13] BRETON J, DANIEL C, DEWULF J, et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure[J]. Toxicol Lett, 2013, 222(2): 132-138.
[14] ALES L, ALEXIS Z, DAMJANA D, et al. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut[J]. Environmental Pollution, 2010, 158(10): 3 186-3 193.
[15] MU D, MENG J, BO X, et al. The effect of cadmium exposure on diversity of intestinal microbial community of Rana chensinensis tadpoles[J].Ecotoxicology & Environmental Safety, 2018, 154: 6-12.
[16] ZHAI Qixiao, WANG Gang, ZHAO Jianxin, et al. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration[J]. Applied & Environmental Microbiology, 2014, 80 (13):4 063-4 071.
[17] GAO B, CHI L, MAHBUB R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites and metabolic pathways[J]. Chemical Research in Toxicology, 2017, 30(4): 996-1 005.
[18] 田丰伟.缓解氧化应激乳酸菌的筛选、表征和功能评价研究[D].无锡:江南大学, 2012.
[19] 夏爽.动物肠道源抗铅益生乳酸菌的分离、鉴定及其缓解铅毒性的机理研究[D]. 哈尔滨:东北农业大学, 2016.
[20] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7): 701-709.
[21] KAWAI K, KAMOCHI R, OIKI S, et al. Probiotics in human gut microbiota can degrade host glycosaminoglycans[J]. Scientific Reports, 2018, 8(1): 10 674.
[22] GÓMEZ-GALLEGO C, POHL S, SALMINEN S, et al. Akkermansia muciniphila: A novel functional microbe with probiotic properties[J]. Beneficial Microbes, 2016, 7(4): 571-584.
[23] MIQUEL S, MART N R, BRIDONNEAU C, et al. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii[J]. Gut Microbes, 2014, 5(2): 146-151.
[24] CORYELL M, MCALPINE M, PINKHAM N V, et al. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models[J]. Nat Commun, 2018, 9(1): 5 424.
[25] 谢婧雯,王烨,朱明,等.多形拟杆菌对糖尿病模型小鼠的影响[J].中国微生态学杂志, 2013, 25(8): 869-873;881.
[26] 宁光,洪洁,王卫庆,等.拟杆菌在治疗或预防肥胖相关疾病中的用途: CN107002022A[P]. 2017-08-01
[27] PUDLO N A, URS K, KUMAR S S, et al. Symbiotichuman gut bacteria with variable metabolic priorities for host mucosal glycans[J]. MBio, 2015, 6(6): e01 282.
[28] HIIPPALA K, JOUHTEN H, RONKAINEN A, et al. Thepotential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10(8): 988.
[29] DENG H, LI Z, TAN Y, et al. A novel strain ofBacteroides fragilis enhances phagocytosis and polarises M1 macrophages[J]. Scientific Reports, 2016, 6: 29 401.
[30] XU J, BJURSELL M K, HIMROD J, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis[J]. Science, 2003, 299(5 615):2 074-2 076.
[31] 张丽萍,王康宁.多形拟杆菌与宿主营养物质的利用[J].中国畜牧杂志, 2009, 45(9): 57-61.
[32] WRZOSEK, MIQUEL S, NOORDINE M L, et al.Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence;the production of mucus glycans and the development of goblet cells in;the colonic epithelium of a gnotobiotic model rodent[J]. Bmc Biology, 2013, 11(1): 61.
[33] EL-GHOR A A, NOSHY M M, EID J I, et al. Lead acetate and arsenic trioxide induce instability of microsatellites at three different fragile sites (6q21, 9q32-9q33 and 15p14) within the genome of the rat[J]. Mutation Research, 2011, 726(2): 195-199.
[34] SUN B, ZHANG X, YIN Y, et al. Effects of sulforaphane and vitamin E on cognitive disorder and oxidative damage in lead-exposed mice hippocampus at lactation[J]. J Trace Elem Med Biol, 2017, 44: 88-92.
[35] 翟齐啸. 乳酸菌减除镉危害的作用及机制研究[D].无锡:江南大学,2015.
[36] 毛丙永.功能性低聚糖对肠道细菌的影响及机制[D].无锡:江南大学, 2015.
[37] MARTENS E C, CHIANG H C, GORDON J I, et al. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont[J]. Cell Host & Microbe, 2008, 4(5): 447-457.
[38] AL-ASMAKH M, ANUAR F, ZADJALI F, et al. Gut microbial communities modulating brain development and function[J]. Gut Microbes, 2012, 3(4): 366-373.
[39] VITAL M,KARCH A,PIEPER D H. Colonic butyrate-producing communities in humans: An overview using Omics data[J]. Msystems,2017,2(6): e00 130-17.
[40] POLANSKY O,SEKELOVA Z,FALDYNOVA M,et al. Important metabolic pathways and biological processes expressed by chicken cecal microbiota[J]. Applied & Environmental Microbiology,2015,82(5): 1 569-1 576.
[41] GWEN F, ANGELIKI V, KRISTOF V, et al. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose[J]. Applied & Environmental Microbiology, 2006, 72(12): 7 835-7 841.
[42] NANDA B V P, AUDREY V, PUIMAN P J, et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection[J]. Biochemical Journal, 2009, 420(2): 211-219.
[43] 李冰,于岩波.肠黏液屏障在肠道中的作用[J].世界华人消化杂志, 2017,25(19): 79-86.
[44] HSIAO E, MCBRIDE S, HSIEN S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders[J]. Cell, 2013, 155(7): 1 451-1 463.
文章导航

/